Organic nitrates (ORNs) are commonly used anti-ischemic and anti-anginal agents, which serve as an exogenous source of the potent vasodilator nitric oxide (NO). Recently, both mitochondrial aldehyde dehydrogenase-2 (ALDH2) and cytosolic aldehyde dehydrogenase-1a1 (ALDH1A1) have been shown to exhibit the ability to selectively bioactivate various ORNs in vitro. The objective of the present research was to examine the potential role of ALDH3A1, another major cytosolic isoform of ALDH, in the in vitro bioactivation of various ORNs, and to estimate the enzyme kinetic parameters toward ORNs through mechanistic modeling.
View Article and Find Full Text PDFOrganic nitrate vasodilators (ORN) exert their pharmacologic effects through the metabolic release of nitric oxide (NO). Mitochondrial aldehyde dehydrogenase (ALDH2) is the principal enzyme responsible for NO liberation from nitroglycerin (NTG), but lacks activity towards other ORN. Cytosolic aldehyde dehydrogenase (ALDH1a1) can produce NO from NTG, but its activity towards other ORN is unknown.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2011
Purpose: L-Arginine (ARG) is converted to nitric oxide (NO) and L-citrulline (CIT) by endothelial nitric oxide synthase which is competitively inhibited by asymmetric dimethylarginine (ADMA). We have developed a liquid chromatography-mass spectrometric method for the simultaneous determination of endogenous ARG, labeled ARG (¹⁵N₄-ARG), CIT, ADMA, and its inactive isomer, symmetric dimethylarginine (SDMA) in biological samples.
Methods: Concentrations of unlabeled ARG, ¹⁵N₄-ARG, CIT, ADMA, and SDMA in EA.
Several studies suggested that long-term nitrate therapy may produce negative outcomes in patient mortality and morbidity. A possible mechanism may involve nitrate-mediated activation of various extracellular matrix (ECM) proteases, particularly matrix metalloproteinase-9 (MMP-9), and adhesion molecules in human macrophages, leading to the destabilization of atherosclerotic plaques. We examined the gene and protein regulating effects on THP-1 human macrophages by repeated exposure to therapeutically relevant concentrations of nitroglycerin (NTG) and possible involvement of nuclear factor (NF)-κB signaling mechanism in mediating some of these observed effects.
View Article and Find Full Text PDF1,4-Butanediol (BD), a substance of abuse, is bioactivated to gamma-hydroxybutyrate (GHB), but its fundamental pharmacokinetics (PK) have not been characterized. Because this bioactivation is partly mediated by alcohol dehydrogenase, we hypothesized that there may also be a metabolic interaction between ethanol (ETOH) and BD. We therefore studied, in rats, the plasma PK of GHB, BD and ETOH each at two intravenous (IV) doses, when each substance was given alone, and when GHB or BD was co-administered with ETOH.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2006
We have developed a liquid chromatographic-mass spectrometric method for the simultaneous determination of nitroglycerin (NTG) and its active metabolites, glyceryl 1,2-dinitrate (1,2-GDN) and glyceryl 1,3-dinitrate (1,3-GDN), for metabolism studies in cell cultures. 1,2,4-Butanetriol-1,4-dinitrate was chosen as an internal standard. Using a linear gradient of water/methanol containing 0.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2004
A new liquid chromatographic-mass spectrometric (LC-MS) method for determining trace concentrations of gamma-hydroxybutyric acid (GHB) in biological samples has been developed. This method utilizes solid-phase extraction for separation, deuterated GHB as an internal standard (IS) and multiple reaction monitoring (MRM) in the negative ion mode to detect the parent and product ions (103 and 57 for GHB, and 109 and 61 for D6-GHB, respectively). The assay produces excellent linearity and reproducibility, with a limit of quantification (LOQ) of about 0.
View Article and Find Full Text PDFThe present study was performed to explore a possible vascular interplay between nitric oxide (NO) and calcitonin gene-related peptide (CGRP). We examined factors affecting CGRP release by the NO donor, nitroglycerin (NTG) and the potential involvement of endothelial NO synthase (eNOS) using eNOS knockout (-/-) vs. wild-type (+/+) mice.
View Article and Find Full Text PDF