Residual tetracycline antibiotics (TCs) in farmland soils with the application of livestock manure cause risks to the growth of vegetables and soil ecology. Here, pot experiments are carried out using through exogenous addition of different levels of oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC), to study the physiological toxicity, uptake, and transportation of TCs in lettuce. The subsequent degradation of TCs in soil was also evaluated along with analyses of soil enzyme activity and microbial population dynamics.
View Article and Find Full Text PDFPot experiments were carried out to study different levels (0, 50, and 150 mg·kg) of three tetracycline antibiotics[tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC)] on the growth, concentration of tetracycline antibiotics, and their characteristics of enrichment and transformation in two kinds of vegetables (lettuce and Chinese cabbage). The results showed that the fresh weight of shoots and roots of lettuce decreased by 1.56%-26.
View Article and Find Full Text PDFSoil incubation experiment and pot experiment were carried out to investigate the influence of nano zeolite (NZ) and ordinary zeolite (OZ) on the soil pH, cation exchange capacity, concentration of soil Cd, soil Cd fraction and Cd uptake by Chinese cabbage when exposed to different Cd pollution levels(1, 5, 10 and 15 mg·kg). The results of soil incubation experiment showed that the nano zeolite and ordinary zeolite dose(5, 10 and 20 g·kg) increased the soil pH and cation exchange capacity, and decreased the concentration of soil exchangeable Cd, while increased the concentration of Cd in carbonate, Fe-Mn oxide, organic matter and residual fraction. The lowest EX-Cd was observed in the high nano zeolite (20 g·kg) treatment.
View Article and Find Full Text PDFIncubation experiments were carried out to investigate the influence of different nano zeolite(NZ) and ordinary zeolite(OZ) levels(0, 5, 10 and 20 g·kg) on the fraction distribution coefficient (FDC) of Cd and soil CEC at different soil pH (4, 5, 6, 7 and 8) when exposed to different cadmium(Cd) levels(1, 5, 10 and 15 mg·kg), and pot experiment were carried out to investigate the effects of nano zeolite(NZ) and ordinary zeolite(OZ) on the growth, Cd concentration and Cd accumulation of Chinese cabbage. The results showed that nano zeolite and ordinary zeolite decreased the concentration and FDC of exchangeable Cd (EX-F), and increased the concentration and FDC of carbonate(CAB-F), Fe-Mn oxide(FMO-F), organic matter (OM-F) and residual fraction(RES-F) in incubation experiments. At the end of incubation, the FDC of soil exchangeable Cd decreased from 72.
View Article and Find Full Text PDFIncubation experiments were carried out to investigate the influence of different nano zeolite (NZ) and ordinary zeolite (OZ) levels(0, 5, 10 and 20 g · kg⁻¹) on the change trends in fraction distribution coefficient (FDC) of Cd when exposed to different Cadmium (Cd) levels (1, 5, 10 and 15 mg · kg⁻¹), and pot experiments were carried out to investigate their influence on soil Cd fraction and Cd uptake by cabbage. The results in incubation experiments showed that the application of nano zeolite as well as ordinary zeolite effectively decreased the FDC of exchangeable Cd and increased the FDC of Fe-Mn oxide fraction. The FDC of soil Cd from 0 d to 28 d was deceased at first, then increased and tended to be stable, and finally increased.
View Article and Find Full Text PDF