Iron accumulation in the brain accelerates Alzheimer's disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aβ fibril structure or the Aβ plaque in a mouse model of Alzheimer's disease (AD) as a pilot study. A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (FeO) to measure field-sensitized reactive oxygen species (ROS) generation.
View Article and Find Full Text PDFBlood vessel anastomosis by suture is a life-saving, yet time-consuming and labor-intensive operation. While suture-less alternatives utilizing clips or related devices are developed to address these shortcomings, suture anastomosis is still overwhelmingly used in most cases. In this study, practical "less-suture" strategies are proposed, rather than ideal "suture-less" methods, to reflect real-world clinical situations.
View Article and Find Full Text PDFPhenylketonuria (PKU) is a common genetic metabolic disorder that causes phenylalanine accumulation in the blood. The most serious symptoms are related to the brain, as intellectual disability, seizure, and microcephaly are commonly found in poorly treated PKU patients and the babies of maternal PKU. However, the mechanism of hyperphenylalaninemia on human neurodevelopment is still unclear.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
September 2019
Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown.
View Article and Find Full Text PDFIt is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer's disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development.
View Article and Find Full Text PDFSystemic injection into blood vessels is the most common method of drug administration. However, targeting drugs to the heart is challenging, owing to its dynamic mechanical motions and large cardiac output. Here, we show that the modification of protein and peptide therapeutics with tannic acid-a flavonoid found in plants that adheres to extracellular matrices, elastins and collagens-improves their ability to specifically target heart tissue.
View Article and Find Full Text PDFBotulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B's therapeutic efficacy and reduce adverse effects.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic β-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking.
View Article and Find Full Text PDFNa(+)/Ca(2+) exchangers are key players for Ca(2+) clearance in pancreatic β-cells, but their molecular determinants and roles in insulin secretion are not fully understood. In the present study, we newly discovered that the Li(+)-permeable Na(+)/Ca(2+) exchangers (NCLX), which were known as mitochondrial Na(+)/Ca(2+) exchangers, contributed to the Na(+)-dependent Ca(2+) movement across the plasma membrane in rat INS-1 insulinoma cells. Na(+)/Ca(2+) exchange activity by NCLX was comparable to that by the Na(+)/Ca(2+) exchanger, NCX.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2015
Background: Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
Leptin regulates pancreatic β-cell excitability through AMP-activated protein kinase (AMPK)-mediated ATP-sensitive potassium (KATP) channel trafficking. However, the signaling components connecting AMPK to KATP channel trafficking are not identified. In this study, we discovered that AMPK inhibits phosphatase and tensin homologue (PTEN) via glycogen synthase kinase 3β (GSK3β) and this signaling pathway is crucial for KATP channel trafficking in leptin-treated pancreatic β-cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2013
Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting K(ATP) channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling.
View Article and Find Full Text PDFOxidative stress remodels Ca(2+) signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca(2+) signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca(2+) current (I(Ca,L)) in rat cardiomyocytes.
View Article and Find Full Text PDFThe Ca(2+)-dependent facilitation (CDF) of L-type Ca(2+) channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca(2+)/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca(2+) currents (I(Ca,L)) by H(2)O(2) and whether Ca(2+) is required in this process.
View Article and Find Full Text PDFObjective: AMP-activated protein kinase (AMPK) and the ATP-sensitive K(+) (K(ATP)) channel are metabolic sensors that become activated during metabolic stress. AMPK is an important regulator of metabolism, whereas the K(ATP) channel is a regulator of cellular excitability. Cross talk between these systems is poorly understood.
View Article and Find Full Text PDFBy means of a degradomic approach applying proteomic techniques, we previously suggested that apolipoprotein E (apoE) is a substrate of matrix metalloproteinase-14 (MMP-14). Here we confirm that apoE is, in fact, a substrate of MMP-14 and also of MMP-7 and MMP-2 to a lesser extent. The 34 kDa apoE protein was initially processed by MMP-14 into fragments with molecular masses of 28, 23, 21, and 11 kDa.
View Article and Find Full Text PDFBackground: Patients suffering from hemorrhagic fever with renal syndrome (HFRS) often showed strikingly reduced high-density lipoprotein (HDL)-cholesterol levels during the oliguric phase, indicating severe alterations in lipoprotein metabolism.
Objective: To compare changes in the functions and composition of HDL, lipoprotein metabolism parameters were analyzed in the sera of HFRS patients in the oliguric phase and after recovery.
Methods: The serum cholesterol, triglyceride (TG), and lipoprotein/apolipoprotein profiles of HFRS patients in the oliguric and recovery phases were compared with those of normal reference sera.
In our previous study, two point mutants of apolipoprotein A-I, designated V156K and A158E, revealed peculiar characteristics in their lipid-free and lipid-bound states. In order to determine the putative therapeutic potential of these mutants, several in vitro and in vivo evaluations were conducted. In the lipid-free state, V156K showed more profound antioxidant activity against LDL oxidation than did the wildtype (WT) or A158E variants in an in vitro assay.
View Article and Find Full Text PDF