Publications by authors named "Sun-Ah Kang"

Kaposi's sarcoma-associated herpesvirus (KSHV) induces B cell hyperplasia and neoplasia, such as multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). To explore KSHV-induced B cell reprogramming , we expressed the KSHV latency locus, inclusive of all viral microRNAs (miRNAs), in B cells of transgenic mice in the absence of the inhibitory FcγRIIB receptor. The BALB/c strain was chosen as this is the preferred model to study B cell differentiation.

View Article and Find Full Text PDF

Lysosomes maintain immune homeostasis through the degradation of phagocytosed apoptotic debris; however, the signaling events regulating lysosomal maturation remain undefined. In this study, we show that lysosome acidification, key to the maturation process, relies on mTOR complex 2 (mTORC2), activation of caspase-1, and cleavage of Rab39a. Mechanistically, the localization of cofilin to the phagosome recruits caspase-11, which results in the localized activation of caspase-1.

View Article and Find Full Text PDF

Tissue-specific immune responses play an important role in the pathology of autoimmune diseases. In systemic lupus erythematosus, deposits of IgG-immune complexes and the activation of complement in the kidney have long been thought to promote inflammation and lupus nephritis. However, the events that localize cells in non-lymphoid tertiary organs and sustain tissue-specific immune responses remain undefined.

View Article and Find Full Text PDF

Infection with Staphylococcus aureus does not induce long-lived protective immunity for reasons that are not completely understood. Human and murine vaccine studies support a role for Abs in protecting against recurring infections, but S. aureus modulates the B cell response through expression of staphylococcus protein A (SpA), a surface protein that drives polyclonal B cell expansion and induces cell death in the absence of costimulation.

View Article and Find Full Text PDF

Apoptotic debris, autoantibody, and IgG-immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that PBMCs from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction.

View Article and Find Full Text PDF

Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis, leading to autoimmune and inflammatory diseases. Herein, we report that macrophages from lupus-prone MRL/lpr mice have impaired lysosomal maturation, resulting in heightened ROS production and attenuated lysosomal acidification. Impaired lysosomal maturation diminishes the ability of lysosomes to degrade apoptotic debris contained within IgG-immune complexes (IgG-ICs) and promotes recycling and the accumulation of nuclear self-antigens at the membrane 72 h after internalization.

View Article and Find Full Text PDF

Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6(-/-) latency mice had the same phenotypes as the latency mice, i.

View Article and Find Full Text PDF

Memory B cell responses are vital for protection against infections but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high-affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG-immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice.

View Article and Find Full Text PDF

To maintain tolerance, autoreactive B cells must regulate signal transduction from the BCR and TLRs. We recently identified that dendritic cells and macrophages regulate autoreactive cells during TLR4 activation by releasing IL-6 and soluble CD40 ligand (sCD40L). These cytokines selectively repress Ab secretion from autoreactive, but not antigenically naive, B cells.

View Article and Find Full Text PDF

Antimicrobial peptides, such as cathelicidin and beta defensins, directly kill microbes and have been detected in human sebaceous glands and cell lines. Despite the presence of several such peptides, the apparent abundance of these is insufficient for direct killing of most skin pathogens. In this study, we sought to determine which molecules provide the majority of antimicrobial peptide activity in human sebocytes.

View Article and Find Full Text PDF

The accelerated development of atherosclerosis with increased risk of cardiovascular disease in systemic lupus erythematosus (SLE) patients is not well understood. An appropriate mouse model would greatly help to understand the mechanisms of this association. We have therefore combined the ApoE(-/-) model of atherosclerosis with three different murine models of SLE.

View Article and Find Full Text PDF

Nuclear autoantigens in systemic lupus erythematosus are thought to derive primarily from apoptotic cells, yet there is no direct evidence that interfering with apoptosis impairs the generation of lupus autoantibodies. Here we use a mouse model that lacks the endonuclease caspase-activated DNase (CAD), resulting in an absence of chromatin and nuclear fragmentation during apoptotic cell death. We show that in this mouse, production and release into circulation of chromatin is impaired after exposure to several apoptotic triggers, but that the absence of CAD does not interfere with upstream steps of apoptosis or immune system function.

View Article and Find Full Text PDF

Autoreactive B cells may become activated in a T-independent manner via synergistic engagement of the BCR and TLRs. Using the VH3H9 Ig H chain transgene to track anti-chromatin B cells, we demonstrate that VH3H9/Vlambda1 anti-chromatin B cells proliferate in response to stimulatory oligodeoxynucleotides containing CpG motifs, suggesting that these autoreactive B cells are responsive to TLR9 signaling. Strikingly, some VH3H9 B cells, but not the well-characterized VH3H9/Vlambda1 B cells, proliferate spontaneously in culture medium.

View Article and Find Full Text PDF