The degradation of rechargeable lithium (Li) metal batteries is primarily attributed to active Li loss, encompassing isolated Li, also known as "dead Li", and solid electrolyte interphase (SEI-Li). Comprehending the formation of dead Li is pivotal for devising strategies to mitigate Li loss. Herein, we reveal the existence of an alternative form of dead Li, termed ionically isolated Li (I-iLi), which diverges from the traditionally recognized electronically isolated Li (E-iLi).
View Article and Find Full Text PDFPropionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
As a leading candidate for high-voltage, cobalt-free cathodes, spinel LiNiMnO (LNMO) oxide is highly attractive for next-generation lithium-ion batteries. However, the instability of cation-oxygen bonds (especially Mn-O) and the adverse two-phase transition of LNMO result in rapid crystal collapse during cycling, thus limiting its practical deployment. To address these issues, herein we exploit the differences in miscibility between dopants and the spinel matrix to embed high-entropy doped microregions (HEDRs, 5-15 nm in size) within the spinel.
View Article and Find Full Text PDFBackground: Kümmell disease (KD)-a rare and relatively complex spinal condition-is a type of posttraumatic osteoporotic vertebral compression fracture manifesting as a delayed collapse of a vertebral body. Although most patients with KD present with pain in the fracture area, some present with pain in the rib region or distal lumbosacral region, without pain in the fracture area, which poses challenges for diagnosing and treating KD.
Objective: We aimed to explore whether percutaneous kyphoplasty can alleviate pain distal to the fracture area caused by either Stage I or Stage II KD.
In order to investigate the mechanisms by which bioaugmentation affects psychrophilic anaerobic digestion (AD), this study introduced a psychrophilic methanogenic culture into the sequencing batch of psychrophilic AD systems. The findings demonstrated that bioaugmentation boosted the abundance of Smithella (23.2 times), Syntrophobacter (9.
View Article and Find Full Text PDFSelenium (Se) is an essential element for humans and animals, and Se deficiency-related diseases are a significant global health concern. Tea may help ameliorate Se deficiencies. However, the mechanisms of natural Se enrichment in tea remain poorly understood, particularly in high-Se soils, such as those in Jiangxi Province.
View Article and Find Full Text PDFIn this experiment, polyphenolic substances were extracted from Camellia sinensis seeds (CSS) using a synergistic treatment of cold isostatic pressure (CIP) and cellulase. The effects of pressure, treatment time, and cellulase addition on the experiment were investigated. And the optimal extraction conditions were established by single factor experiment and Box-benhken experiments: the pressure applied by CIP was 408.
View Article and Find Full Text PDFLithium (Li) plating, triggered by fast charging and low temperature, will cause performance degradation and safety concerns for lithium-ion batteries (LIBs). However, strategically limited and controlled Li deposition might be advantageous for enhancing energy density. The detailed mechanism and regulation for performance improvement are yet to be fully explored.
View Article and Find Full Text PDFDecision-making involves weighing up the outcome likelihood, potential rewards, and effort needed. Previous research has focused on the trade-offs between risk and reward or between effort and reward. Here we bridge this gap and examine how risk in effort levels influences choice.
View Article and Find Full Text PDFCo-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.
View Article and Find Full Text PDFMitigating the growth of dendritic lithium (Li) metal on silicon (Si) anodes has become a crucial task for the pursuit of long-term cycling stability of high energy density Si-based lithium-ion batteries (LIBs) under fast charging or other specific conditions. While it is widely known that Li metal plating on Si-based anodes may introduce inferior cycling stability and cause safety concerns, the evolution of the anode/material structure and electrochemical performance with Li metal plating remains largely unexplored. A comprehensive quantitative investigation of the hybrid Li storage mechanism, combining the Li alloying/dealloying mechanism and plating/stripping mechanism, has been conducted to explore the effect of Li plating on Si-based anodes.
View Article and Find Full Text PDFBackground: Non-muscle invasive bladder cancer (NMIBC) is the most prevalent type of bladder cancer, typically associated with a favorable prognosis and a risk of recurrence during the follow-up period. Inflammatory markers have been used to predict prognosis in various cancer types. The aim of this study was to explore the prognostic value of the readily accessible inflammatory markers, platelet-to-lymphocyte ratio (PLR) and interleukin-6 (IL-6), in NMIBC.
View Article and Find Full Text PDFAs one of the most widespread musculoskeletal diseases worldwide, intervertebral disc degeneration (IVDD) remains an intractable clinical problem. Currently, oxidative stress has been widely considered as a significant risk factor in the IVDD pathological changes, and targeting oxidative stress injury to improve the harsh microenvironment may provide a novel and promising strategy for disc repair. It is evident that spermidine (SPD) has the ability to attenuate oxidative stress across several disease models.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
The huge volume expansion/contraction of silicon (Si) during the lithium (Li) insertion/extraction process, which can lead to cracking and pulverization, poses a substantial impediment to its practical implementation in lithium-ion batteries (LIBs). The development of low-strain Si-based composite materials is imperative to address the challenges associated with Si anodes. In this study, we have engineered a TiSi interface on the surface of Si particles via a high-temperature calcination process, followed by the introduction of an outermost carbon (C) shell, leading to the construction of a low-strain and highly stable Si@TiSi@NC composite.
View Article and Find Full Text PDFCalcium carbonate (CaCO), which exhibits excellent biocompatibility and bioactivity, is a well-established bone filling material for bone defects. Here, we synthesized CaCOmicrospheres (CMs) to use as an intelligent carrier to load bone morphogenetic protein-2 (BMP-2). Subsequently, drug-loaded CMs and catalase (CAT) were added to methacrylated gelatin (GelMA) hydrogels to prepare a composite hydrogel for differential release of the drugs.
View Article and Find Full Text PDFSweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis.
View Article and Find Full Text PDFObjective: This study aims to identify potential independent risk factors for residual low back pain (LBP) in patients with thoracolumbar osteoporotic vertebral compression fractures (OVCFs) following percutaneous kyphoplasty (PKP) treatment. Additionally, we aim to develop a nomogram that can accurately predict the occurrence of residual LBP.
Methods: We conducted a retrospective review of the medical records of thoracolumbar OVCFs patients who underwent PKP treatment at our hospital between July 2021 and December 2022.
TiNb O with Wadsley-Roth phase delivers double theoretical specific capacity and similar working potential in comparison to spinel Li Ti O , the commercial high-rate anode material, and thus can enable much higher energy density of lithium-ion batteries. However, the inter-particle resistance within the high-mass-loading TiNb O electrode would impede the capacity release for practical application, especially under fast-charging conditions. Herein, 10-20 μm-size carbon-coated TiNb O secondary particle (SP-TiNb O ) consisting of initial micro-scale TiNb O particles (MP-TiNb O ) was fabricated.
View Article and Find Full Text PDFThe accumulation of volatile fatty acids (VFAs) in anaerobic digestion (AD) systems resulting from food waste overload poses a risk of system collapse. However, limited understanding exists regarding the inhibitory mechanisms and effective strategies to address VFAs-induced stress. This study found that accumulated VFAs exert reactive oxygen species (ROS) stress on indigenous microbiota, particularly impacting methanogens due to their lower antioxidant capability compared to bacteria, which is supposed to be the primary reason for methanogenesis failure.
View Article and Find Full Text PDFLow-temperature lithium metal batteries are of vital importance for cold-climate condition applications. Their realization, however, is plagued by the extremely sluggish Li transport kinetics in the vicinity of Li metal anode at low temperatures. Different from the widely adopted electrolyte engineering, a functional interphase design concept is proposed in this work to efficiently improve the low-temperature electrochemical reaction kinetics of Li metal anodes.
View Article and Find Full Text PDFWadsley-Roth phase niobium titanium oxide (TiNbO) is widely regarded as a promising anode candidate for fast-charging lithium-ion batteries due to its safe working potential and doubled capacity in comparison to the commercial fast-charging anode material (lithium titanium oxide, LiTiO). Although good fast charge/discharge performance was shown for nanostructured TiNbO, the small size would cause the low electrode compensation density and energy density of batteries, as well as parasitic reactions. Fundamental understanding of the electrochemical lithium insertion/extraction process and the structural evolution for the micrometer-scale single crystalline TiNbO (MSC-TiNbO) could provide insights to understand its inherent properties and possibility for fast-charging application.
View Article and Find Full Text PDFIn this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products.
View Article and Find Full Text PDFDevelopment of effective recycling strategies for cathode materials in spent lithium-ion batteries are highly desirable but remain significant challenges, among which facile separation of Al foil and active material layer of cathode makes up the first important step. Here, we propose a reaction-passivation driven mechanism for facile separation of Al foil and active material layer. Experimentally, >99.
View Article and Find Full Text PDF