Publications by authors named "Sun Yiyu"

Injuries to axons within the central nervous system (CNS) pose a substantial clinical challenge due to their limited regenerative capacity. This study investigates the therapeutic potential of Cell-free fat extract (CEFFE) in CNS injury. CEFFE was injected intravitreally after the optic nerve was crushed.

View Article and Find Full Text PDF

Background: Tear trough deformity makes patients appear tired. Patients with less severe tear trough deformity prefer a less invasive method to correct the deformity. The infraorbital area is a multilayered tissue, and the aging of various components leads to tear trough deformity.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush.

View Article and Find Full Text PDF

Background: Glioma is characterized by high morbidity, high mortality, and poor prognosis. Despite tremendous advances in the treatment of glioma, the prognosis of patients with glioma is still unsatisfactory. There is an urgent need to discover novel molecular markers that effectively predict prognosis in patients with glioma.

View Article and Find Full Text PDF

Background: To correct nasal tip cephalic rotation, SEG made of cartilage or Medpor are often used in rhinoplasty. These techniques require extensive experience for the surgeon, and not all patients can accept this procedure. In this research, we introduce a new method to correct nasal tip cephalic rotation that is relatively simple and rapid.

View Article and Find Full Text PDF

Source and mask optimization (SMO) is a key technique to guarantee the lithographic fidelity for 14-5 nm technology nodes. The balance between lithography fidelity and computational efficiency is a big issue for SMO. Our earlier works of compressive sensing SMO (CS-SMO) effectively accelerated the SMO procedure by sampling monitoring pixels.

View Article and Find Full Text PDF

Autologous auricular cartilage is used extensively as a good graft material in rhinoplasty. In this study, clinical specimens from patients who underwent revision rhinoplasty with auricular cartilage grafts were collected to compare the changes before and after auricular cartilage transplantation with the use of histologic, immunohistochemical, and quantitative assays. Patients who underwent revision rhinoplasty from 2018 to 2022 were analyzed.

View Article and Find Full Text PDF

Since autologous cartilage is a good transplant material, it is widely used in various fields of clinical medicine. In this study, we collected clinical specimens obtained at different numbers of years after transplantation and used histologic staining to explore the post-transplantation changes in auricular cartilage and costal cartilage. A retrospective analysis was performed on patients who underwent primary autologous cartilage rhinoplasty and secondary rhinoplasty from 2017 to 2021, and the remaining autologous cartilage tissue after surgery was used for histologic testing.

View Article and Find Full Text PDF

This study aimed to explore and analyze the factors influencing the drainage volume after comprehensive rhinoplasty. The clinical data of 102 patients who underwent comprehensive rhinoplasty at Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine from August 2019 to August 2021 were retrospectively analyzed. The effects of age, sex, body mass index, whether an osteotomy was performed, and whether a nasal septum flap was obtained on the indwelling time of the drainage tube after the operation were analyzed by single factor analysis and multiple logistic regression analysis.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major public health problem worldwide which causes high mortality and disability. Functioning as microRNA (miRNA) sponges, long non-coding RNA (lncRNA) regulates the expression of protein-coding genes in a competing endogenous RNA (ceRNA) network. However, the lncRNA-associated ceRNA in TBI remains unclear.

View Article and Find Full Text PDF

High accuracy and fast polarization measurements at a low light field are significant in various applications, spanning from quantum optics to diagnosis of living biological tissue. In this paper, we developed an optimized spatially modulated polarimetry (OSMP) with an efficient calibration method that establishes a quantitative link between the intensity distribution of an arbitrary incident polarization state and four intensity distributions of specific input polarization states. Such a calibration method not only considers the total polarimetric errors induced by polarization elements and the focusing lens but also simplifies the procedure of calibration.

View Article and Find Full Text PDF

Current source and mask optimization (SMO) research tends to focus on advanced inverse optimization algorithms to accelerate SMO procedures. However, innovations of forward imaging models currently attract little attention, which impacts computational efficiency more significantly. A sampling-based imaging model is established with the innovation of an inverse point spread function to reduce computational dimensions, which can provide an advanced framework for fast inverse lithography.

View Article and Find Full Text PDF

The function of glial cells in axonal regeneration after injury has been the subject of controversy in recent years. Thus, deeper insight into glial cells is urgently needed. Many studies on glial cells have elucidated the mechanisms of a certain gene or cell type in axon regeneration.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are the sole output neurons that carry visual information from the eye to the brain. Due to various retinal and optic nerve diseases, RGC somas and axons are vulnerable to damage and lose their regenerative capacity. A basic question is whether the manipulation of a key regulator of RGC survival can protect RGCs from retinal and optic nerve diseases.

View Article and Find Full Text PDF

Recently, a single vectorial pupil optimization (VPO) was proposed to compensate for the polarization effect induced by thick mask and image optics at one field point in a lithography system, which does not work at full field points. In this paper, we propose a multi-objective VPO (MOVPO) method to obtain a universal vectorial pupil that can compensate for the polarization aberration at full field points. A novel multi-objective cost function, to the best of our knowledge, is built and includes uneven image pattern errors causing by polarization aberration (PA) at full field points in the MOVPO method.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography is a new generation of integrated circuit manufacturing technology with great development prospects. EUV lithography has more significant demand for high exposure latitude (EL) due to greater requirements for the stability of the light source. Source and mask optimization (SMO) technology is widely used to compensate for imaging distortion.

View Article and Find Full Text PDF

Imaging-based measurement methods of polarization aberration (PA) are indispensable in hyper-numerical aperture projection optics for advanced lithography. However, the current methods are derived from the Kirchhoff model and ignore the 3D mask effect of the test mask, which will impact the measurement accuracy. In this paper, a novel imaging-based measurement method of PA is proposed based on a rigorous imaging model to improve the measurement accuracy.

View Article and Find Full Text PDF

Understanding the mechanisms of activity-dependent gene transcription underlying adaptive behaviors is challenging at neuronal-subtype resolution. Using cell-type specific molecular analysis in agouti-related peptide (AgRP) neurons, we reveal that the profound hunger-induced transcriptional changes greatly depend on plant homeodomain finger protein 6 (PHF6), a transcriptional repressor enriched in AgRP neurons. Loss of PHF6 in the satiated mice results in a hunger-state-shifting transcriptional profile, while hunger fails to further induce a rapid and robust activity-dependent gene transcription in PHF6-deficient AgRP neurons.

View Article and Find Full Text PDF

Polarization distortion innately exists in hyper numerical aperture immersion lithography system. Polarization distortion, mainly including polarization aberration (PA) of lithography projection optics and thick mask induced polarization distortion, would seriously impact on lithography imaging quality. Some computational lithography technologies, such as robust optical proximity correction and robust source and mask optimization, have been introduced and developed to reduce the impact of polarization distortion on lithography imaging.

View Article and Find Full Text PDF

Our recent study investigated the role of collapsin response mediator protein-2 (CRMP2) on dendritic spine morphology and memory function after traumatic brain injury (TBI). First, we examined the density and morphology of dendritic spines in Thy1-GFP mice on the 1 st day (P1D) and 7th day (P7D) after controlled cortical impact injury (CCI). The dendritic spine density in the hippocampus was decreased on P1D, in which mainly mushroom-type and thin-type spines were lost.

View Article and Find Full Text PDF

Background: Secondary lymphedema is a refractory disease, for which adipose-derived stem cells have shown some therapeutic potential. However, the mechanism of this action remains poorly understood.

Methods: The authors identified podoplanin-expressing adipose-derived stem cells, which allowed them to divide adipose-derived stem cells into podoplanin-positive and podoplanin-negative groups that they characterized in vitro.

View Article and Find Full Text PDF

Fast source optimization (SO) is in demand urgently for holistic lithography on-line at 14-5 nm nodes. Our earlier works of fast compressive sensing (CS) SO methods adopted randomly sampling monitoring pixels on layout patterns, consequently resulting in failure of SO sometimes and poor image fidelity compared to gradient-based SO with complete sampling (SD-SO). This paper proposes a novel certain contour sampling-Bayesian compressive sensing SO (CCS-BCS-SO) method to achieve the goals of fast SO and high fidelity patterns simultaneously.

View Article and Find Full Text PDF

Some pupil wavefront optimization (PWO) approaches were studied to compensate the thick mask effects considering only a field point, and these PWO methods neglect the inherent wave aberration in a realistic lithography system. Particularly, the wave aberration of lithography projection optics is exposure field dependent, and the wave aberrations at different fields of view (FOVs) would seriously and unevenly impact the results and effects of PWO. The current PWO method for single FOV cannot match full FOV.

View Article and Find Full Text PDF

Source and mask optimization (SMO) technology based on vectorial image model is indispensable in immersion lithography process at advanced technology node. Many kinds of algorithms have achieved successes in aspect of fast and robust SMO without accounting polarization aberration (PA). However, because the PA arising from immersion projection optics unevenly impacts on imaging performance, the conventional SMO would not be applicable in real lithography system.

View Article and Find Full Text PDF