Publications by authors named "Sun Xueguang"

Ectomycorrhizal (ECM) fungi and dark septate endophytes (DSEs) can both form a symbiotic relationship with the same host plant. However, the interactions that occur among these two types of fungi and their co-hosts are largely unknown. Here, we investigated interactions that occur among the ECM fungus , the DSE , and their co-host .

View Article and Find Full Text PDF

Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the - ECM. promoted the growth of via the release of volatile organic compounds and exudates during the pre-symbiotic stage.

View Article and Find Full Text PDF

A simulation of the environment inhabited by arbuscular mycorrhizal (AM) fungi could provide clues as to how to cultivate these obligate biotrophs axenically. Host intraradical and rhizospheric environments, root extracts and exudates in particular, would be crucial for AM fungi to complete their life cycles. In this study, we analyzed and compared the effects of root exudates (RE) and root extracts (RET) of white clover () on the asymbiotic growth of the AM fungus in vitro, and furtherly analyzed the chemical components of different RET with the LC-MS/MS technique in order to establish an asymbiotic cultivation system for this important and hardly domesticated AM fungus.

View Article and Find Full Text PDF

Fungi play key roles in forest ecosystems and help to shape the forest's diverse functions. However, little is known about the diversity of phyllospheric fungi or their possible relationships with fungal communities residing in different micro-environments of Pinus massoniana forests. We investigated seven different sample types: mature needles (NM), dead needles (ND), needles falling as litter (L), fermenting needles (F), humus (H), top soil (0-20 cm) (TS), and secondary soil (20-40 cm) (SS).

View Article and Find Full Text PDF

Background/aims: The role of DHRS3 in human cancer remains unclear. Our study explored the role of in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.

Materials: Bisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter.

View Article and Find Full Text PDF

Jatropha curcas, an economically important biofuel feedstock with oil-rich seeds, has attracted considerable attention among researchers in recent years. Nevertheless, valuable information on the yield component of this plant, particularly regarding ovule development, remains scarce. In this study, transcriptome profiles of anther and ovule development were established to investigate the ovule development mechanism of J.

View Article and Find Full Text PDF

Although the role of 5-methylcytosine has been well studied, the biological role of 5-hydroxymethylcytosine still remains unclear because of the limited methods available for single-base detection of 5-hydroxymethylcytosine (5hmC). Here, we present mirror bisulfite sequencing for 5hmC detection at a single CpG site by synthesizing a DNA strand to mirror the parental strand. This semiconservative duplex is sequentially treated with β-glucosyltransferase and M.

View Article and Find Full Text PDF

Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites.

View Article and Find Full Text PDF

While low-throughput RNA bisulfite sequencing is the method of choice to assess the methylation status of specific cytosines in candidate RNAs, the combination of bisulfite treatment of RNA with today's high-throughput sequencing techniques opens the door to methylation studies at nucleotide resolution on a transcriptome-wide scale. Below we describe a protocol for the transcriptome-wide analysis of total or fractionated poly(A)RNA in cells and tissues. Although the nature of the bisulfite sequencing protocol makes it comparably easy to translate from a low to a high-throughput approach, several critical points require attention before starting such a project.

View Article and Find Full Text PDF

Background and Aims. Many studies have focused on the determination of methylated targets in colorectal cancer. However, few analyzed the progressive methylation in the sequence from normal to adenoma and ultimately to malignant tumors.

View Article and Find Full Text PDF

Spores are important propagules as well as the most reliable species-distinguishing traits of arbuscular mycorrhizal (AM) fungi. During surveys of AM fungal communities, spore enumeration and spore identification are frequently conducted, but generally little attention is given to the age and viability of the spores. In this study, AM fungal spores in the rhizosphere were characterized as live or dead by vital staining and by performing a germination assay.

View Article and Find Full Text PDF

5-hydroxymethylcytosine (5hmC) is an epigenetic modification, which has been associated with gene expression in many biological contexts. Reduced representation hydroxymethylation profiling was developed as an enzymatic-based method for genome-wide 5hmC detection. It exploits β-glucosyltransferase to inhibit enzymatic cleavage of adapters ligated to a genomic library, allowing only fragments with glucosylated 5hmC residues at adapter junctions to be amplified and sequenced.

View Article and Find Full Text PDF

DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) symbiosis improves host plant phosphorous (P) status and elicits the expression of AM-inducible phosphate transporters (PTs) in arbuscule-containing cells, where they control arbuscule morphogenesis and P release. We confirmed such functions for LjPT4 in mycorrhizal Lotus japonicus. Promoter-GUS experiments showed LjPT4 transcription not only in arbusculated cells but also in root tips, in the absence of the fungus: here LjPT4 transcription profile depended on the phosphate level.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L.

View Article and Find Full Text PDF

Current methods for genomic mapping of 5-hydroxymethylcytosine (5hmC) have been limited by either costly sequencing depth, high DNA input, or lack of single-base resolution. We present an approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP) to map 5hmC sites at single-base resolution by exploiting the use of beta-glucosyltransferase to inhibit enzymatic digestion at the junction where adapters are ligated to a genomic library. Therefore, only library fragments presenting glucosylated 5hmC residues at the junction are sequenced.

View Article and Find Full Text PDF

We developed a novel approach, J-binding protein 1 sequencing (JBP1-seq), that combines the benefits of an improved recombinant JBP1 protein, Nextera-based library construction, and next-generation sequencing (NGS) for genome-wide profiling of 5-hydroxymethylcytosine (5hmC). Compared with the original JBP1, this new recombinant JBP1 was biotinylated in vivo and conjugated to magnetic beads via biotin-streptavidin interactions. These modifications allowed a more efficient and consistent pull-down of β-glucosyl-5-hydroxymethylcytosine (β-glu-5hmC), and sequence-ready libraries can be generated within 4.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer death in women worldwide which is closely related to metastasis. But the exact molecular mechanism on metastasis is still not fully understood; we now report that both MRTF-A and STAT3 play important role in breast cancer migration of MDA-MB-231 cells. Moreover, MRTF-A and STAT3 synergistically increased MDA-MB-231 cell migration by promoting the expression of migration markers Myl-9 and Cyr-61.

View Article and Find Full Text PDF
Article Synopsis
  • Human chorionic gonadotropin (hCG) is produced by placental cells and is linked to reduced breast cancer risk in women.
  • Research shows that hCG inhibits the growth and spread of MCF-7 breast cancer cells by lowering markers for cell proliferation and promoting differentiation through specific markers.
  • The effectiveness of hCG may be compromised if its secretion or receptor activity is inhibited, and it also reduces the expression of estrogen receptor alpha, revealing a potential protective mechanism against breast cancer.
View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer death in women worldwide. It is well known that oncogene activation and anti-oncogene inactivation affect the development and progression of breast cancer, but the role of oncogene activation and anti-oncogene inactivation in breast cancer is still not fully understood. We now report that maspin acts as a tumor suppressor gene to induce MCF-7 cell apoptosis.

View Article and Find Full Text PDF

The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC.

View Article and Find Full Text PDF

High expression of estrogen receptor α (ERα) is associated with a poor prognosis that correlates closely with cellular proliferation in breast cancer. However, the exact molecular mechanism by which ERα controls breast cancer cell proliferation is not clear. Here we report that ERα regulates the cell cycle by suppressing p53/p21 and up-regulating proliferating cell nuclear antigen (PCNA) and proliferation-related Ki-67 antigen (Ki-67) to promote proliferation of MCF-7 cells.

View Article and Find Full Text PDF

Background: DNA methylation is an important epigenetic modification involved in many biological processes. Bisulfite treatment coupled with high-throughput sequencing provides an effective approach for studying genome-wide DNA methylation at base resolution. Libraries such as whole genome bisulfite sequencing (WGBS) and reduced represented bisulfite sequencing (RRBS) are widely used for generating DNA methylomes, demanding efficient and versatile tools for aligning bisulfite sequencing data.

View Article and Find Full Text PDF

Plant cellulosic biomass is an abundant, low-cost feedstock for producing biofuels and chemicals. Expressing cell wall-degrading (CWD) enzymes (e.g.

View Article and Find Full Text PDF

Close to 50% of the human genome harbors repetitive sequences originally derived from mobile DNA elements, and in normal cells, this sequence compartment is tightly regulated by epigenetic silencing mechanisms involving chromatin-mediated repression. In cancer cells, repetitive DNA elements suffer abnormal demethylation, with potential loss of silencing. We used a genome-wide microarray approach to measure DNA methylation changes in cancers of the head and neck and to compare these changes to alterations found in adjacent non-tumor tissues.

View Article and Find Full Text PDF