Optical tissue clearing enables the precise imaging of cellular and subcellular structures in whole organs and tissues without the need for physical tissue sectioning. By combining tissue clearing with confocal or lightsheet microscopy, 3D images can be generated of entire specimens for visualization and large-scale data analysis. Here we demonstrate two different passive tissue clearing techniques that are compatible with immunofluorescent staining and lightsheet microscopy: PACT, an aqueous hydrogel-based clearing method, and iDISCO+, an organic solvent-based clearing method.
View Article and Find Full Text PDFBackground: Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme.
View Article and Find Full Text PDFFrom the combined perspective of biologists, microscope instrumentation developers, imaging core facility scientists, and high performance computing experts, we discuss the challenges faced when selecting imaging and analysis tools in the field of light-sheet microscopy. Our goal is to provide a contextual framework of basic computing concepts that cell and developmental biologists can refer to when mapping the peculiarities of different light-sheet data to specific existing computing environments and image analysis pipelines. We provide our perspective on efficient processes for tool selection and review current hardware and software commonly used in light-sheet image analysis, as well as discuss what ideal tools for the future may look like.
View Article and Find Full Text PDFThe spinal cord contains a diverse array of sensory and motor circuits that are essential for normal function. Spinal cord injury (SCI) permanently disrupts neural circuits through initial mechanical damage, as well as a cascade of secondary injury events that further expand the spinal cord lesion, resulting in permanent paralysis. Tissue clearing and 3D imaging have recently emerged as promising techniques to improve our understanding of the complex neural circuitry of the spinal cord and the changes that result from damage due to SCI.
View Article and Find Full Text PDF