Publications by authors named "Sun Wenjing"

The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.

View Article and Find Full Text PDF

JUIM01 is an industrial 2-keto-d-gluconate (2KGA)-producing strain. However, its regulation mechanism of 2KGA metabolism remains to be clarified. Among other reported species, the 2-ketogluconate utilization operon ( operon) plays key roles in 2KGA catabolism.

View Article and Find Full Text PDF

Pushing the limit of the charging cut-off voltage inevitably leads to the instability of bulk and interfacial structures. Herein, one-step dual-modified LiCoO (LCO) is achieved by thermodynamic decomposition of lithiuim salts on the surface, featuring F-doped bulk and LiF & LiBO coating layers. Notably, such artificial near-surface reconfiguration effectively suppresses Co dissolution, structural deconstruction and electrolyte side reactions during repeated lithiation/delithiation processes.

View Article and Find Full Text PDF

Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.

View Article and Find Full Text PDF

β-1,3-Glucans form the major carbohydrate component of fungal cell walls, playing a vital role in cell viability, stress response, virulence, and even healthy functions such as immuno-enhancement. The elongation and branching of β-1,3-glucans is a mystery. More evidence proved the β-1, 3-glucantransferases belonging to GH72 or GH17 family to branch and remodel the synthesized linear β-1, 3-glucan chain by cleaving its internal β-1, 3-linkage and transfer the cleaved fragment to the nonreducing end of another β-1, 3-glucan acceptor.

View Article and Find Full Text PDF

Oxalate decarboxylase converts oxalate to formate and CO without requiring organic cofactors, making it biotechnologically relevant for applications in food, agriculture, and diagnostics. Its activity is highly dependent on pH; however, the pH-dependent catalytic mechanism remains poorly understood. This study identified a novel oxalate decarboxylase, BsOxdC, from Bacillus safensis and investigated its catalytic properties through heterologous expression and enzymatic assays.

View Article and Find Full Text PDF

Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species Prorocentrum obtusidens and the unarmored species Karenia mikimotoi to OA over a 28-day period.

View Article and Find Full Text PDF

CO-soluble surfactant foam systems have gained significant attention for their potential to enhance oil recovery, particularly in tight oil reservoirs where conventional water-soluble surfactants face challenges such as poor injectability and high reservoir sensitivity. This review provides a comprehensive explanation of the basic theory of CO-soluble surfactant foam, its mechanism in enhanced oil recovery (EOR), and the classification and application of various CO-soluble surfactants. The application of these surfactants in tight oil reservoirs, where low permeability and high water sensitivity limit traditional methods, is highlighted as a promising solution to improve CO mobility control and increase oil recovery.

View Article and Find Full Text PDF

The objective of this study is to examine the efficacy of magnetic resonance imaging (MRI) features and peripheral blood biomarkers in assessing cognitive function in patients with cerebral small vessel disease (CSVD). A total of 58 CSVD patients were recruited. Six features of white matter hyperintensities (WMHs) were derived from MRI scans.

View Article and Find Full Text PDF

Genus bacteria mainly consume glucose through the Entner-Doudoroff (ED) route due to a lack of a functional Embden-Meyerhof-Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase () operon in the ED route was well investigated to find its structural characteristics and roles in the regulation of glucose consumption and 2-ketogluconic acid (2KGA) metabolism in the industrial 2KGA-producer JUIM01. The operon contained four structural genes of , , , and , encoding 6-PG dehydratase Edd, glucokinase Glk, response regulatory factor GltR, and histidine kinase GtrS, respectively.

View Article and Find Full Text PDF

As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively.

View Article and Find Full Text PDF

Sediment accretion (burial) and nutrient enrichment may exert a synergistic influence on the growth and distribution of macrophytes in floodplain wetlands; however, this phenomenon has rarely been examined. In this study, we investigated the effects of sediment accretion and nutrient enrichment on the growth and vegetative propagation of within a stand (one ramet within 25 C ramets) using a factorial sediment burial (0, 3, and 6 cm) and nutrient addition (low, medium, and high) experimental design. High sediment burial (6 cm) without nutrient addition decreased the aboveground and total biomass of but did not affect , indicating that is more tolerant to sediment burial than .

View Article and Find Full Text PDF
Article Synopsis
  • - Cancer is the second leading cause of death globally, highlighting the urgent need for innovative and effective treatments, like X-ray-induced photodynamic therapy (X-PDT), which uses penetrating X-rays to treat deep-seated tumors more effectively than traditional methods.
  • - Recent advancements in X-PDT have focused on reducing radiation doses and improving early detection and real-time monitoring via advanced X-ray imaging techniques and new nano-agents that enhance imaging sensitivity and quality.
  • - This review explores the potential of X-ray responsive theranostics in cancer treatment, discussing their mechanisms, biocompatibility, and promising applications in managing various types of cancers including breast, liver, lung, skin, and colorectal cancers.
View Article and Find Full Text PDF
Article Synopsis
  • The combination of Trex2 exonuclease with Cas9 protein improved genome editing efficiency in hexaploid common wheat.
  • This fusion allows for the simultaneous editing of multiple desirable traits in just one generation.
  • It supports the advancement of genome editing-assisted breeding specifically in polyploid crops, making it easier for scientists to enhance crop varieties.
View Article and Find Full Text PDF

Solid additives have drawn great attention due to their numerous appealing benefits in enhancing the power conversion efficiencies (PCEs) of organic solar cells (OSCs). To date, various strategies have been reported for the selection or design of non-volatile solid additives. However, the lack of a general design/evaluation principles for developing non-volatile solid additives often results in individual solid additives offering only one or two efficiency-boosting attributes.

View Article and Find Full Text PDF

Oxidative cleavage of aromatic C(sp)-O bond is important to the conversion of biomass and plastic wastes into value-added chemicals. Here we put forward the oxidative cleavage of para-C-O bonds in phenolic compounds in use of oxoammonium salts as oxidant and water as the oxygen source. The mechanism is that oxoammonium cation activates water to form hydroxy-oxoammonium adduct and thus realizes the ipso-substitution of 4-alkoxyphenol, which is proved by substituent effect, isotope labelling experiments, and kinetic analysis.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) mediated pyroptosis plays a significant role in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms regulating pyroptosis remain unclear. In the study, we aimed to investigate the underlying mechanism of pyroptosis in myocardial I/R injury.

View Article and Find Full Text PDF

Background: The early diagnosis and treatment of Heliobacter pylori (H.pylori) gastrointestinal infection provide significant benefits to patients. We constructed a convolutional neural network (CNN) model based on an endoscopic system to diagnose H.

View Article and Find Full Text PDF
Article Synopsis
  • 3-Hydroxypropionic acid (3-HP) is a valuable chemical used in various industries, but its production through biosynthesis is hindered by challenges like weak production systems and high fermentation costs.
  • Researchers aimed to improve 3-HP production by enhancing the metabolic pathways and fermentation processes, particularly by optimizing the malonyl-CoA pathway and employing a hybrid pathway to increase carbon flow.
  • After these adjustments, the production efficiency was markedly improved, achieving yields of 42.8 g/L in fed-batch experiments, showcasing significant advancements in 3-HP biosynthesis.
View Article and Find Full Text PDF

The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types.

View Article and Find Full Text PDF

Gastric cancer is one of the most malignant digestive tract tumors worldwide and its progression is associated with gene expression and metabolic alteration. We revealed that the gastric cancer patients with lower expression level of TOB1 exhibited poorer overall survivals according to the data in Kaplan-Meier Plotter. The unphosphorylated TOB1 protein which is effective expressed lower in gastric cancer cells.

View Article and Find Full Text PDF

Gellan gum has been widely used in many industries due to its excellent physical properties. In this study, the effects of different fermentation conditions on molecular weight and production of gellan gum were analyzed, and the optimized fermentation conditions for a high molecular weight gellan gum (H-GG: 6.42 × 10 Da) were obtained, which increased the molecular weight and yield of gellan gum by 201.

View Article and Find Full Text PDF

Chemotherapeutic resistance is a major obstacle to the effectiveness of cisplatin-based chemotherapy for gastric cancer (GC), leading to treatment failure and poor survival rates. However, the underlying mechanisms are not fully understood. Our study demonstrated that the transcription factor myocyte enhancer factor 2A (MEF2A) plays a role in chemotherapeutic drug resistance by regulating the transcription of PGC1α and KEAP1, promoting mitochondrial biogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * A study revealed that rising temperatures (from 22°C to 26°C) significantly influenced the dinoflagellates, enhancing growth and photosynthetic efficiency but decreasing overall nutrient content.
  • * The research highlighted that elevated temperatures interact with other stressors, leading to heightened energy production and material synthesis, showcasing the complex effects of combined environmental changes on these organisms.
View Article and Find Full Text PDF