Publications by authors named "Sun Sik Kim"

Developing a highly efficient electrocatalyst for detecting hazardous bisphenol S (BPS) is essential to minimize health risks. Herein, we fabricate γ-FeO nanocubes (IONCs) anchored on carbon nanotube nanoribbons (CNRs) (denoted as IONCs-CNRs) for the electrochemical detection of BPS in vegetables. Importantly, the IONCs can be selectively formed only on CNRs via amperometric deposition, while γ-FeO cubic clusters (IOCCs) form in the absence of CNRs.

View Article and Find Full Text PDF

Dendrite growth and in-homogeneous solid electrolyte interphase (SEI) buildup of Li metal anodes hinder the longtime discharge-charge cycling and safety in secondary metal batteries. Here, the authors report an in-situ restructured artificial lithium/electrolyte SEI exposing an ultrasmooth and thin layer mediated through graphene quantum dots (GQDs). The reformed artificial interphase comprises a mixture of organic/inorganic-rich compositions alike as mosaic interphase, albeit the synergistic effect mediated via hydroxylated GQDs involving redeposition-borne lithium, and its accumulated salts, facilitate a homogeneous and ultrasmooth near fluorine-rich interfacial environment ensuring a facile lithium-ion (Li-ion) diffusion and dendritic-free nature.

View Article and Find Full Text PDF

Polymer binders for sulfur cathodes play a very critical role as they prerequisites for an in-situ immobilization against polysulfide shuttle and volume change, while ensuring good adhesion within active materials for ion conduction along with robust mechanical and chemical stability. Here, we demonstrate anionic surface charge facilitated bio-polymer binder for sulfur cathodes enabling excellent performance and fire safety improvement. The aqueous-processable tragacanth gum-based binder is adjusted to house high sulfur loading over 12 mg cm without compromising the sulfur utility and reversibility, imparting high accessibility for Li-ions to sulfur particles about 80%.

View Article and Find Full Text PDF

Batteries capable of quick charging as fast as fossil fuel vehicles are becoming a vital issue in the electric vehicle market. However, conversion-type materials promising as a next-generation anode have many problems to satisfy fast charging and long-term cycles due to their low conductivity and large irreversibility despite a high theoretical capacity. Here, we report effective strategies for a SnO-based anode to enable rapid-charging, long-cycle, and high reversible capacity.

View Article and Find Full Text PDF

Iron sulfide (FeS) anodes are plagued by severe irreversibility and volume changes that limit cycle performances. Here, a synergistically coupled hybrid composite, nanoengineered iron sulfide/S-doped graphene aerogel, was developed as high-capacity anode material for Li/Na-ion half/full batteries. The rational coupling of in situ generated FeS nanocrystals and the S-doped rGO aerogel matrix boosted the electronic conductivity, Li /Na diffusion kinetics, and accommodated the volume changes in FeS.

View Article and Find Full Text PDF

A phenomenon is observed in which the electrochemical performances of porous graphene electrodes show unexpectedly increasing capacities in the Li storage devices. However, despite many studies, the cause is still unclear. Here, we systematically present the reason for the capacity enhancements of the pristine graphene anode under functional group exclusion through morphological control and crystal structure transformation.

View Article and Find Full Text PDF