Publications by authors named "Sun Hwa Jung"

Ever since the potential of algae in biotechnology was recognized, models describing the growth of algae inside photobioreactors have been proposed. These models are the basis for the optimization of process conditions and reactor designs. Over the last few decades, models became more and more elaborate with the increase of computational capacity.

View Article and Find Full Text PDF

Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode.

View Article and Find Full Text PDF

Objective: Disruption of the circadian rhythm is known as a provoking factor for manic episodes. Individual differences exist in the recovery rate from disruption in the general population. To develop a screening method to detect individuals vulnerable to bipolar disorder, the authors observed the relationship between the recovery of the normal sleep-wake cycle after switching the light-dark (LD) cycle and quinpirole-induced hyperactivity in mice.

View Article and Find Full Text PDF

This article describes the rapid and diversified synthesis of pyrrolidinyl triazoles for the discovery of mitochondrial permeability transition pore (mPTP) blockers. The 1,3-dipolar cycloaddition of ethynyl trifluoroborate with azidopyrrolidine produced a key intermediate, triazolyl trifluoroborate 4, which subsequently underwent a Suzuki-Miyaura coupling reaction to afford a series of 1,4-disubstituted triazoles 2. Subsequent biological evaluation of these derivatives indicated 2ag and 2aj as the most potent mPTP blockers exhibiting excellent cytochrome P450 (CYP) stability when compared to the previously reported oxime analogue 1.

View Article and Find Full Text PDF

We explored the potential energy surfaces for adenine synthesis by oligomerizations of HCN or HNC from CBS-QB3 calculations. The pathways have been obtained for the formation of the covalently bound HCN dimer, trimer, tetramer, and pentamer (adenine) by sequential additions of HCN or HNC. The activation energies of the individual oligomerization stages are a few hundred kilojoules per mole, which prevent efficient adenine synthesis in interstellar space or in the atmosphere of Titan.

View Article and Find Full Text PDF

Starting from quinuclidinyl oxime 1 identified by preliminary screening, a series of azacycles-containing oxime derivatives was synthesized. Their mPTP blocking activities were evaluated by a JC-1 assay, measuring the change of mitochondrial membrane potential. The inhibitory activity of nine compounds against amyloid beta-induced mPTP opening was comparable or even superior to that of piracetam.

View Article and Find Full Text PDF

Human intestinal maltase (HMA) is an α-glucosidase responsible for the hydrolysis of α-1,4-linkages from the non-reducing end of malto-oligosaccharides. HMA has become an important target in the treatment of type-2 diabetes. In this study, epigallocatechin gallate (EGCG) and EGCG glucoside (EGCG-G1) were identified as inhibitors of HMA by an assay with IC of 20 ± 1.

View Article and Find Full Text PDF

Astragalin (kaempferol-3-O-β-D-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-D-glucopyranosyl-(1→3)-O-α-D-glucopyranoside (or kaempferol-3-O-β-D-nigeroside, Ast-G1') and kaempferol-3-O-β-D-glucopyranosyl-(1→6)-O-α-D-glucopyranoside (or kaempferol-3-O-β-D-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-D-isomaltooligosacharide (Ast-IMO or Ast-Gn; n=2-8). The astragalin glucosides exhibited 8.

View Article and Find Full Text PDF

Hydroquinone galactoside (HQ-Gal) as a potential skin whitening agent was synthesized by the reaction of lactase (beta-galactosidase) from Kluyveromyces lactis, Aspergillus oryzae, Bacillus circulans, and Thermus sp. with lactose as a donor and HQ as an acceptor. Among these lactases, the acceptor reaction involving HQ and lactose with K.

View Article and Find Full Text PDF