Publications by authors named "Sun Goo Hwang"

Utilizing livestock manure as organic fertilizer in sustainable agriculture is crucial and should be developed through an appropriate manufacturing process. Solid-liquid separation contributes to reducing odor, managing nutrients in livestock excretions, and lowering the cost of transporting manure to arable soil. To investigate the impact of fermentation after solid-liquid separation, we examined the specific correlation between chemical properties and bacterial communities in solid-liquid manures before and after the fermentation process.

View Article and Find Full Text PDF

Introduction: The development of organic manure from livestock excreta is a useful source for sustainable crop production in environment-friendly agriculture. Organic manure increases soil microbial activity and organic matter (OM) supply. The excessive use of chemical fertilizers (CFs) leads to air and water pollution caused by toxic chemicals and gases, and soil quality degradation via nutrient imbalance due to supplying specific chemical components.

View Article and Find Full Text PDF

Introduction: Fennel (Foeniculum vulgare Mill.) is widely used to produce natural bio-materials. Elevated CO (eCO) concentrations in the atmosphere improve the net photosynthesis of plants.

View Article and Find Full Text PDF

Cryptorchidism, a condition in which testes fail to descend from the abdomen into the scrotum, is a risk factor for infertility and germ cell cancer. Normally, tight junctions between adjacent Sertoli cells in the testes form a blood-testes barrier that regulates spermatogenesis; however, the effect of cryptorchidism on tight junctions is not well-understood. We established a model of heat-induced testicular damage in dogs using surgical cryptorchidism.

View Article and Find Full Text PDF

Background: Gut microbiota dysbiosis is linked to the development and responses of the immune system and can play an important role in the onset of allergic diseases including atopic dermatitis (AD). This study investigated the association between host genetics and the gut microbiota in AD.

Methods: A global gene expression profiling of the gut epithelial colonocytes, genetic variations analysis, and the gut microbial composition analysis were performed.

View Article and Find Full Text PDF

Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP.

View Article and Find Full Text PDF

Ionizing radiation has a substantial effect on physiological and biochemical processes in plants via induction of transcriptional changes and diverse genetic alterations. Previous microarray analysis showed that rice OsFBX322, which encodes a rice F-box protein, was downregulated in response to three types of ionizing radiation: gamma irradiation, ion beams, and cosmic rays. In order to characterize the radiation-responsive genes in rice, OsFBX322 was selected for further analysis.

View Article and Find Full Text PDF

The root plays an important role during plant development and growth, i.e., the plant body maintenance, nutrient storage, absorption of water, oxygen and nutrient from the soil, and storage of water and carbohydrates, etc.

View Article and Find Full Text PDF

The presence of arsenic (As) in polluted environments, such as ground water, affects the accumulation of As in rice grains and causes a serious threat to human health. However, the precise molecular regulations related to As toxicity and tolerance in rice remain largely unknown. In the present study, we developed an arsenic-tolerant type 1 (ATT1) rice mutant by γ-irradiation mutagenesis and performed genome-wide transcriptome analysis for the characterization of As-responsive genes.

View Article and Find Full Text PDF

Arsenic (As) accumulation adversely affects the growth and productivity of plants and poses a serious threat to human health and food security. In this study, we identified one As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase gene from rice root tissues during As stress. We named it Oryza sativa As-Induced RING E3 ligase 2 (OsAIR2).

View Article and Find Full Text PDF

Purpose: Gamma rays (GR) induce significant changes in the structure and expression of genes involved in the regulation of diverse biochemical and physiological processes. Arabidopsis plants exhibit different growth and development patterns in response to exposure to GR. The effects on gene expression of different radiation doses of GR (100 and 800 Gy) administered to Arabidopsis plants were examined at the reproductive stage.

View Article and Find Full Text PDF

Ubiquitination-mediated protein degradation via Really Interesting New Gene (RING) E3 ligase plays an important role in plant responses to abiotic stress conditions. Many plant studies have found that RING proteins regulate the perception of various abiotic stresses and signal transduction. In this study, Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1) gene was selected randomly from 44 Oryza sativa RING Finger Proteins (OsRFPs) genes highly expressed in rice roots exposed to salinity stress.

View Article and Find Full Text PDF

High levels of arsenic (As) in plants are a serious threat to human health, and arsenic accumulation affects plant metabolism and ultimately photosynthesis, growth, and development. We attempted to isolate As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase genes from rice, and we have designated one such gene Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1). OsAIR1 expression was induced under abiotic stress conditions, including drought, salt, heat, and As exposure.

View Article and Find Full Text PDF

Acquired resistance to lapatinib is a highly problematic clinical barrier that has to be overcome for a successful cancer treatment. Despite efforts to determine the mechanisms underlying acquired lapatinib resistance (ALR), no definitive genetic factors have been reported to be solely responsible for the acquired resistance in breast cancer. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets related to breast cancer with ALR, using the R-based RankProd package.

View Article and Find Full Text PDF

In order to develop rice mutants for crop improvement, we applied γ-irradiation mutagenesis and selected a rice seed color mutant (MT) in the M14 targeting-induced local lesions in genome lines. This mutant exhibited differences in germination rate, plant height, and root length in seedlings compared to the wild-type plants. We found 1645 different expressed probes of MT by microarray hybridization.

View Article and Find Full Text PDF

Background/aim: Despite great effort to elucidate the process of acquired gefitinib resistance (AGR) in order to develop successful chemotherapy, the precise mechanisms and genetic factors of such resistance have yet to be elucidated.

Materials And Methods: We performed a cross-platform meta-analysis of three publically available microarray datasets related to cancer with AGR. For the top 100 differentially expressed genes (DEGs), we clustered functional modules of hub genes in a gene co-expression network and a protein-protein interaction network.

View Article and Find Full Text PDF

LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought.

View Article and Find Full Text PDF

In a previous study, we identified a number of genes induced by chilling using a microarray approach. In order to investigate the molecular mechanism underlying chilling tolerance and possible crosstalk with other abiotic stresses, we selected a rice gene, OsChI1 (Os01g61160), for further analysis. The OsChI1 gene encodes a putative laccase precursor protein.

View Article and Find Full Text PDF

In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress.

View Article and Find Full Text PDF

In order to develop a rice population with improved important traits such as flowering time, we developed 2,911 M2 targeting-induced local lesions in genomes (TILLING) lines by irradiating rice seeds with γ-rays. In all, 15 M3 lines were obtained from 3 different M2 lines that exhibited an early-maturing phenotype: these plants matured approximately 25 days faster than wild-type (WT) plants. To identify genome-wide DNA polymorphisms, we performed whole-genome resequencing of both the plant types, i.

View Article and Find Full Text PDF

Ionizing radiation (IR) affects gene expression from plant genomes. To monitor the genome-wide transcriptional changes induced by three types of IR, we used the rice Affymetrix GeneChip microarray to identify genes that are up- or down-regulated by gamma rays (GAs), cosmic rays (CRs) and ion beams (IBs). The overall expression patterns in rice seedlings generated from seeds exposed to GAs and IBs were similar but differed for CRs exposure.

View Article and Find Full Text PDF

Heat stress is an example of a severe abiotic stress that plants can suffer in the field, causing a significant detrimental effect on their growth and productivity. Understanding the mechanism of plant response to heat stress is important for improving the productivity of crop plants under global warming. We used a microarray dataset that is deposited in the public database to evaluate plant responses to heat stress, and we selected the top 10 genes that are highly expressed under heat stress in rice.

View Article and Find Full Text PDF

Plant physiological and biochemical processes are significantly affected by gamma irradiation stress. In addition, gamma-ray (GA) differentially affects gene expression across the whole genome. In this study, we identified radio marker genes (RMGs) responding only to GA stress compared with six abiotic stresses (chilling, cold, anoxia, heat, drought and salt) in rice.

View Article and Find Full Text PDF

A large number of really interesting new gene (RING) E3 ligases contribute to the post-translational modification of target proteins during plant responses to environmental stresses. However, the physical interactome of RING E3 ligases in rice remains largely unknown. Here, we evaluated the expression patterns of 47 Oryza sativa RING finger protein (OsRFP) genes in response to abiotic stresses via semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and in silico analysis.

View Article and Find Full Text PDF

Ionizing radiation directly and indirectly affects gene expression within the plant genome. To access the antioxidant response of rice to different types of ionizing radiation, rice seeds were exposed to gamma-ray, cosmic-ray and ion beam radiation. Exposure to ionizing radiation dramatically decreased the shoot length in all plants but not the root length compared with a non-irradiated plant.

View Article and Find Full Text PDF