Background And Aims: AI-enhanced 12-lead ECG can detect a range of structural heart diseases (SHDs) but has a limited role in community-based screening. We developed and externally validated a noise-resilient single-lead AI-ECG algorithm that can detect SHD and predict the risk of their development using wearable/portable devices.
Methods: Using 266,740 ECGs from 99,205 patients with paired echocardiographic data at Yale New Haven Hospital, we developed ADAPT-HEART, a noise-resilient, deep-learning algorithm, to detect SHD using lead I ECG.
Background: Identifying structural heart diseases (SHDs) early can change the course of the disease, but their diagnosis requires cardiac imaging, which is limited in accessibility.
Objective: To leverage images of 12-lead ECGs for automated detection and prediction of multiple SHDs using an ensemble deep learning approach.
Methods: We developed a series of convolutional neural network models for detecting a range of individual SHDs from images of ECGs with SHDs defined by transthoracic echocardiograms (TTEs) performed within 30 days of the ECG at the Yale New Haven Hospital (YNHH).
In the rapidly evolving landscape of modern healthcare, the integration of wearable and portable technology provides a unique opportunity for personalized health monitoring in the community. Devices like the Apple Watch, FitBit, and AliveCor KardiaMobile have revolutionized the acquisition and processing of intricate health data streams that were previously accessible only through devices only available to healthcare providers. Amidst the variety of data collected by these gadgets, single-lead electrocardiogram (ECG) recordings have emerged as a crucial source of information for monitoring cardiovascular health.
View Article and Find Full Text PDF