Hemapolin (2α,3α-epithio-17α-methyl-5α-androstan-17β-ol) is a designer steroid that is an ingredient in several "dietary" and "nutritional" supplements available online. As an unusual chemical modification to the steroid A-ring could allow this compound to pass through antidoping screens undetected, the metabolism of hemapolin was investigated by an in vivo equine drug administration study coupled with GC-MS analysis. Following administration of synthetically prepared hemapolin to a thoroughbred horse, madol (17α-methyl-5α-androst-2-en-17β-ol), reduced and dihydroxylated madol (17α-methyl-5α-androstane-2β,3α,17β-triol), and the isomeric enone metabolites 17β-hydroxy-17α-methyl-5α-androst-3-en-2-one and 17β-hydroxy-17α-methyl-5α-androst-2-en-4-one, were detected and confirmed in equine urine extracts by comparison with a library of synthetically derived reference materials.
View Article and Find Full Text PDFIn vitro technologies provide the capacity to study drug metabolism where in vivo studies are precluded due to ethical or financial constraints. The metabolites generated by in vitro studies can assist anti-doping laboratories to develop protocols for the detection of novel substances that would otherwise evade routine screening efforts. In addition, professional bodies such as the Association of Official Racing Chemists (AORC) currently permit the use of in-vitro-derived reference materials for confirmation purposes providing additional impetus for the development of cost effective in vitro metabolism platforms.
View Article and Find Full Text PDF