Publications by authors named "Sumone Chakravarti"

CD1d-restricted NKT cells include CD4(+) and DN subsets, with an additional CD8(+) subset that is present in humans but not in mice. The molecular regulation of CD4/CD8 expression by NKT cells, and differentiation of these NKT-cell subsets, is poorly understood. The transcription factors GATA3 and ThPOK regulate lineage commitment of conventional MHC class II-restricted CD4(+) T cells; however, their role in CD4/CD8 expression by CD1d-restricted NKT cells is less clear.

View Article and Find Full Text PDF

NKT cell subsets can be divided based on CD4 and NK1.1 expression and tissue of origin, but the developmental and functional relationships between the different subsets still are poorly understood. A comprehensive study of 19 cytokines across different NKT cell subsets revealed that no two NKT subpopulations exhibited the same cytokine profile, and, remarkably, the amounts of each cytokine produced varied by up to 100-fold or more among subsets.

View Article and Find Full Text PDF

T cells slow their motility, increase adherence, and arrest after encounters with antigen-presenting cells (APCs) bearing peptide-MHC complexes. Here, we analyzed the cell-cell communication among activating T cells. In vivo and in vitro, activating T cells associated in large clusters that collectively persisted for >30 min, but they also engaged in more transient interactions, apparently distal to APCs.

View Article and Find Full Text PDF

Recent studies have suggested that IL-21 is a key factor in the development of IL-17-producing CD4 T cells (Th17) and that the induction of experimental autoimmune encephalomyelitis, which depends on mounting an efficient Th17 response, is reportedly impaired in the absence of IL-21 signaling. In this study, we provide supportive in vitro evidence that IL-21 can drive Th17 responses in conjunction with TGF-beta. However, more importantly we also demonstrate, using IL-21- and IL-21R-deficient mice, that IL-21 is not essential for the differentiation of Th17 cells in vitro and in vivo.

View Article and Find Full Text PDF

Identification of the T cell immunoglobulin mucin-domain containing (Tim) gene family introduced a new family of cell surface molecules that is involved in the regulation of immune responses. We previously demonstrated that Tim-3 is expressed on terminally differentiated T helper (Th)1 cells, and serves to regulate Th1 immune responses. Here, we describe the identification and function of Tim-2, a novel member of the Tim gene family.

View Article and Find Full Text PDF

The recently identified TIM gene family encodes cell-surface receptors that are involved in the regulation of Th1- and Th2-cell-mediated immunity. Tim-3 protein is specifically expressed on Th1 cells and negatively regulates Th1 responses, whereas Tim-2 is preferentially expressed in Th2 cells. Tim-1, previously identified as the hepatitis A virus receptor, co-stimulates T-cell expansion and cytokine production.

View Article and Find Full Text PDF

The newly identified TIM family of proteins is associated with regulation of T helper type 1 (T(H)1) and T(H)2 immune responses. TIM-1 is genetically linked to asthma and is a receptor for hepatitis A virus, but the endogenous ligand of TIM-1 is not known. Here we show that TIM-4, which is expressed by antigen-presenting cells, is the ligand for TIM-1.

View Article and Find Full Text PDF

T helper type 1 (T(H)1) immune responses are central in cell-mediated immunity, and a T(H)1-specific cell surface molecule called Tim-3 (T cell immunoglobulin domain, mucin domain) has been identified. Here we report the identification of a secreted form of Tim-3 that contains only the immunoglobulin (Ig) variable (V) domain of the full-length molecule. Fusion proteins (Tim-3-Ig) of both Tim-3 isoforms specifically bound CD4(+) T cells, indicating that a Tim-3 ligand is expressed on CD4(+) T cells.

View Article and Find Full Text PDF