Publications by authors named "Sumon Pal"

We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents.

View Article and Find Full Text PDF

Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits.

View Article and Find Full Text PDF

Revealing the functional connectivity in natural neuronal networks is central to understanding circuits in the brain. Here, we show that silicon nanowire field-effect transistor (Si NWFET) arrays fabricated on transparent substrates can be reliably interfaced to acute brain slices. NWFET arrays were readily designed to record across a wide range of length scales, while the transparent device chips enabled imaging of individual cell bodies and identification of areas of healthy neurons at both upper and lower tissue surfaces.

View Article and Find Full Text PDF

Experience-dependent changes in neural circuits have traditionally been investigated several synapses downstream of sensory input. Whether experience can alter the strength of primary sensory synapses remains mostly unknown. To address this issue, we investigated the consequences of odor deprivation on synapses made by olfactory sensory axons in the olfactory bulb of rats.

View Article and Find Full Text PDF

Neural activity regulates the number and properties of GABAergic synapses in the brain, but the mechanisms underlying these changes are unclear. We found that blocking spike activity globally in developing hippocampal neurons from rats reduced the density of GABAergic terminals as well as the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Chronic inactivity later in development led to a reduction in the mIPSC amplitude, without any change in GABAergic synapse density.

View Article and Find Full Text PDF

Nitrosative stress has been implicated in a large number of neurological disorders. The molecular mechanisms underlying the neuronal injury associated with this stimulus, however, are not clearly understood. Emerging evidence suggests that the liberation of intracellular zinc as well as over-activation of potassium channels may be two important components of nitrosative stress-induced neuronal death.

View Article and Find Full Text PDF

Cellular K+ efflux is a requisite event in the unfolding of apoptosis programs across many types of cells and death-inducing stimuli; however, the molecular identities of the ion channels mediating this key event have remained undefined. Here, we show that Kv2.1-encoded K+ channels are responsible for the expression of apoptosis in cortical neurons in vitro.

View Article and Find Full Text PDF

Neurodegenerative disorders in humans may be triggered or exacerbated by exposure to occupational or environmental agents. Here, we show that a brief exposure to methylisothiazolinone, a widely used industrial and household biocide, is highly toxic to cultured neurons but not to glia. We also show that the toxic actions of this biocide are zinc dependent and require the activation of p44/42 extracellular signal-regulated kinase (ERK) via a 12-lipoxygenase-mediated pathway.

View Article and Find Full Text PDF