Cell Death Discov
December 2018
Human immunodeficiency virus-1 (HIV) infection of the central nervous system promotes neuronal injury that culminates in HIV-associated neurocognitive disorders. Viral proteins, including transactivator of transcription (Tat), have emerged as leading candidates to explain HIV-mediated neurotoxicity, though the mechanisms remain unclear. Tat transgenic mice or neurons exposed to Tat, which show neuronal loss, exhibit smaller mitochondria as compared to controls.
View Article and Find Full Text PDFCombined antiretroviral therapies (cART) have had remarkable success in reducing morbidity and mortality among patients infected with human immunodeficiency virus (HIV). However, mild forms of HIV-associated neurocognitive disorders (HAND), characterized by loss of synapses, remain. cART may maintain an undetectable HIV RNA load but does not eliminate the expression of viral proteins such as trans-activator of transcription (Tat) and the envelope glycoprotein gp120 in the brain.
View Article and Find Full Text PDFA key facet of professional development is the formation of professional identity. At its most basic level, professional identity for a scientist centers on mastery of a discipline and the development of research skills during doctoral training. To develop a broader understanding of professional identity in the context of doctoral training, the Carnegie Initiative on the Doctorate (CID) ran a multi-institutional study from 2001 to 2005.
View Article and Find Full Text PDFHuman immunodeficiency virus type-1 (HIV) infection of the central nervous system promotes neuronal injury and apoptosis that culminate in HIV-associated neurocognitive disorders (HAND). Viral proteins, such as transactivator of transcription (Tat), have emerged as leading candidates to explain HIV-mediated neurotoxicity, though the mechanism remains unclear. To determine the effects of Tat, rat cortical neurons were exposed to nanomolar concentrations of Tat for various time points.
View Article and Find Full Text PDFOpioids have been shown to influence the immune system and to promote the expression of pro-inflammatory cytokines in the central nervous system. However, recent data have shown that activation of opioid receptors increases the expression and release of the neuroprotective chemokine CCL5 from astrocytes in vitro. To further define the interaction between CCL5 and inflammation in response to opioids, we have examined the effect of chronic morphine and morphine withdrawal on the in vivo expression of CCL5 as well as of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α).
View Article and Find Full Text PDF