Publications by authors named "Summer Horchler"

Tissue loss, irrespective of etiology, often requires extensive reconstruction. In many instances, the need exceeds what current treatments and technologies modern medicine can offer. Tissue engineering has made immense strides within the past few decades due to advances in biologics, biomaterials, and manufacturing.

View Article and Find Full Text PDF

Objective: The success of engineered tissues continues to be limited by time to vascularization and perfusion. Recently, we described a simple microsurgical approach, termed micropuncture (MP), which could be used to rapidly vascularize an adjacently placed scaffold from the recipient macrovasculature. Here we studied the long-term persistence of the MP-induced microvasculature.

View Article and Find Full Text PDF

Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small lipid bilayer-delimited particles that are naturally released from cells into body fluids, and therefore can travel and convey regulatory functions in the distal parts of the body. EVs can transmit paracrine signaling by carrying over cytokines, chemokines, growth factors, interleukins (ILs), transcription factors, and nucleic acids such as DNA, mRNAs, microRNAs, piRNAs, lncRNAs, sn/snoRNAs, mtRNAs and circRNAs; these EVs travel to predecided destinations to perform their functions. While mesenchymal stem cells (MSCs) have been shown to improve healing and facilitate treatments of various diseases, the allogenic use of these cells is often accompanied by serious adverse effects after transplantation.

View Article and Find Full Text PDF