NSCLC is the leading cause of cancer death due, in part, to a lack of active therapies in advanced disease. We demonstrate that combination therapy with a proteasome inhibitor, BH3-mimetic, and chemotherapy is an active precision therapy in NSCLC cells and tumors expressing Onc-p53 alleles.
View Article and Find Full Text PDFThrough a unique genomics and drug screening platform with ~800 solid tumor cell lines, we have found a subset of SCLC cell lines are hypersensitive to venetoclax, an FDA-approved inhibitor of BCL-2. SCLC-A (ASCL1 positive) and SCLC-P (POU2F3 positive), which make up almost 80% of SCLC, frequently express high levels of BCL-2. We found that a subset of SCLC-A and SCLC-P showed high BCL-2 expression but were venetoclax-resistant.
View Article and Find Full Text PDFp53 mutations with single amino acid changes in cancer often lead to dominant oncogenic changes. Here, we have developed a mouse model of gain-of-function (GOF) p53-driven lung cancer utilizing conditionally active LSL p53-R172H and LSL K-Ras-G12D knock-in alleles that can be activated by Cre in lung club cells. Mutation of the p53 transactivation domain (TAD) (p53-L25Q/W26S/R172H) eliminating significant transactivation activity resulted in loss of tumorigenicity, demonstrating that transactivation mediated by or dependent on TAD is required for oncogenicity by GOF p53.
View Article and Find Full Text PDFDepletion of epithelial cells after lung injury prompts proliferation and epithelial mesenchymal transition (EMT) of progenitor cells, and this repopulates the lost epithelial layer. To investigate the cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury, irrespective of their p53 status.
View Article and Find Full Text PDFGain-of-function (GOF) mutants of p53 upregulate genes implicated in cell proliferation and oncogenesis. Here, we report that GOF p53 induces tumorigenicity through simultaneous activation of key oncogenic pathways including those controlling putative tumor-initiating cell functions. We determined that in cells expressing p53-R273H, GOF p53 simultaneously upregulates genes from multiple signaling pathways by recognizing promoters containing distinct transcription factor (TF) binding sites.
View Article and Find Full Text PDFGain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency.
View Article and Find Full Text PDFUnlabelled: Many mutant p53 proteins exhibit an abnormally long half-life and overall increased abundance compared with wild-type p53 in tumors, contributing to mutant p53's gain-of-function oncogenic properties. Here, a novel mechanism is revealed for the maintenance of mutant p53 abundance in cancer that is dependent on DNA damage checkpoint activation. High-level mutant p53 expression in lung cancer cells was associated with preferential p53 monoubiquitination versus polyubiquitination, suggesting a role for the ubiquitin/proteasome system in regulation of mutant p53 abundance in cancer cells.
View Article and Find Full Text PDFHuman lung cancers harboring gain-of-function (GOF) p53 alleles express higher levels of the epidermal growth factor receptor (EGFR). We demonstrate that a number of GOF p53 alleles directly upregulate EGFR. Knock-down of p53 in lung cancer cells lowers EGFR expression and reduces tumorigenicity and other GOF p53 properties.
View Article and Find Full Text PDFOver the past few decades, advances in cancer research have enabled us to understand the different mechanisms that contribute to the aberrant proliferation of normal cells into abnormal cells that result in tumors. In the pursuit to find cures, researchers have primarily focused on various molecular level changes that are unique to cancerous cells. In humans, about 50 % or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate cell cycle and apoptosis.
View Article and Find Full Text PDFSubcell Biochem
December 2014
Frequent overexpression of MDM2 in human cancers suggests that the protein confers a survival advantage to cancer cells. However, overexpression of MDM2 in normal cells seems to restrict cell proliferation. This review discusses the cell growth regulatory functions of MDM2 in normal and genetically defective cells to assess how cancer cells evade the growth-restricting consequence of MDM2 overexpression.
View Article and Find Full Text PDFp53 is a tumor suppressor protein whose key function is to maintain the integrity of the cell. Mutations in p53 have been found in up to 50 % of all human cancers and cause an increase in oncogenic phenotypes such as proliferation and tumorigenicity. Both wild-type and mutant p53 have been shown to transactivate their target genes, either through directly binding to DNA, or indirectly through protein-protein interactions.
View Article and Find Full Text PDFGain-of-function mutant p53 is thought to induce gene expression in part by binding transcription factors bound to promoters for genes that mediate oncogenesis. We investigated the mechanism of mutant p53 binding by mapping the human genomic binding sites for p53 R273H using ChIP-Seq and showed them to localize to ETS DNA sequence motifs and locations with ETS1 and GABPA binding, both within promoters and distal to promoters. Strikingly, p53 R273H showed statistically significant and substantial binding to bidirectional promoters, which are enriched for inverted repeated ETS DNA sequence motifs.
View Article and Find Full Text PDFPurpose: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance.
View Article and Find Full Text PDFp53 mutations are present in up to 70% of lung cancer. Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 or no p53. Expression of tumor-derived mutant p53 in cells leads to up-regulated expression of genes that may affect cell growth and oncogenesis.
View Article and Find Full Text PDFMutant p53 may activate target genes through the interaction of transcription factors or through histone modifications. Chromatin immunoprecipitation (ChIP) is a method commonly used to study these types of protein interactions. In order to generate a list of target genes that may be activated through this mechanism, ChIP sequencing may be used.
View Article and Find Full Text PDFIn order to study the functions of a cell's endogenous mutant p53, the p53 protein levels must be knocked-down. Transient transfection of small interfering RNAs is one way to accomplish this. Another is the stable expression of short hairpin RNAs.
View Article and Find Full Text PDFDNA replication involves a coordinated progression through S phase, and disruption of these regulated steps may cause gene abnormalities, which may lead to cancer. Different stages of DNA replication can be detected immunofluorescently that would indicate how replication is progressing in a cell population or under specific conditions. We describe a method for labeling replicating DNA with two nucleotide analogs, and then detecting the sequential patterns of incorporation using fluorescently labeled antibodies on DNA spread onto a glass slide.
View Article and Find Full Text PDFPro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone.
View Article and Find Full Text PDFMethods Mol Biol
April 2013
Protein-protein interaction studies can provide valuable insight into protein function. One of the most practical and high-yielding approaches is immunoprecipitation of a bait protein followed by mass spectrometry to identify co-precipitating proteins. Here we describe an effective and simplified version of this method that can be performed in most laboratories using standard laboratory equipment (apart from the mass spectrometer).
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2012
p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with "gain of function" (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437, carrying endogenous mutants p53-P278S and -R267P, show reduction in growth rate on knock-down on p53 levels.
View Article and Find Full Text PDFThe current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53.
View Article and Find Full Text PDFCancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 and show "gain of function" (GOF) phenotypes such as increased growth rate, enhanced resistance to chemotherapeutic drugs, increased cell motility and tumorigenicity; although the mechanism for this function remains unknown. In this communication we report that p53-mediated NF-κB2 up-regulation significantly contributes to the aggressive oncogenic behavior of cancer cells. Lowering the level of mutant p53 in a number of cancer cell lines resulted in a loss of GOF phenotypes directly implicating p53 mutants in the process.
View Article and Find Full Text PDF