Background: Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFBrain-derived neurotrophic factor () transcription is controlled by several promoters, which drive expression of multiple transcripts encoding an identical protein. We previously reported that BDNF derived from promoters I and II is highly expressed in hypothalamus and is critical for regulating aggression in male mice. Here we report that BDNF loss from these promoters causes reduced sexual receptivity and impaired maternal care in female mice, which is concomitant with decreased oxytocin ( expression during development.
View Article and Find Full Text PDFBackground: Electroconvulsive therapy (ECT) is a rapid and effective treatment for major depressive disorder. Chronic stress-induced depression causes dendrite atrophy and deficiencies in brain-derived neurotrophic factor (BDNF), which are reversed by anti-depressant drugs. Electroconvulsive seizures (ECS), an animal model of ECT, robustly increase BDNF expression and stimulate dendritic outgrowth.
View Article and Find Full Text PDF