Publications by authors named "Sumita Chakrabarti"

Opioid dose escalation to effectively control pain is often linked to the current prescription opioid abuse epidemic. This creates social as well as medical imperatives to better understand the mechanistic underpinnings of opioid tolerance to develop interventions that minimize it, thereby maximizing the analgesic effectiveness of opioids. Profound opioid analgesic tolerance can be observed in the absence of mu-opioid receptor (MOR) downregulation, aggregate MOR G protein uncoupling, and MOR desensitization, in the absence of impaired G protein coupled receptor kinase phosphorylation, arrestin binding, or endocytosis.

View Article and Find Full Text PDF

We recently demonstrated in rat spinal cord that a regimen of escalating doses of systemic morphine, analogous to regimens used clinically for chronic pain management, selectively up-regulates the mu-opioid receptor (MOR) splice variants MOR-1B2 and MOR-1C1 mRNA and functional protein. This study investigated the potential relevance of up-regulating MOR-1B2 and MOR-1C1 to the ability of chronic morphine to shift MOR signaling from predominantly G /G inhibitory to G stimulatory. Specifically, we tested the hypotheses that chronic morphine induces phosphorylation of carboxyl terminal sites unique to MOR-1B2 and MOR-1C1, and that this phosphorylation is causally related to augmented association of these variants with G α.

View Article and Find Full Text PDF

Caveolin-1 is the predominant structural protein of caveolae, a subset of (lipid) membrane rafts that compartmentalize cell signaling. Caveolin-1 binds most to G protein-coupled receptors and their signaling partners, thereby enhancing interactions among signaling cascade components and the relative activation of specific G protein-coupled pathways. This study reveals that chronic opioid exposure of μ-opioid receptor (MOR) expressing Chinese hamster ovary cells (MOR-CHO) and chronic in vivo morphine exposure of rat spinal cord augmented recruitment of multiple components of MOR-adenylyl cyclase (AC) stimulatory signaling by caveolin-1.

View Article and Find Full Text PDF

We recently reported (Verzillo, et al. J. Neurochem: 130, 790-796, 2014) that chronic systemic morphine selectively up-regulates mRNA encoding two C-terminal μ-opioid receptor (MOR) splice variants, MOR-1C1 and MOR-1B2 (MOR-1B2/-1C1).

View Article and Find Full Text PDF

The gene encoding the mu-opioid receptor (MOR) generates a remarkable diversity of subtypes, the functional significance of which remains largely unknown. The structure of MOR could be a critical determinant of MOR functionality and its adaptations to chronic morphine exposure. As MOR antinociception has sexually dimorphic dimensions, we determined the influence of sex, stage of estrus cycle, and chronic systemic morphine on levels of MOR splice variant mRNA in rat spinal cord.

View Article and Find Full Text PDF

We studied adaptations to acute precipitated opioid withdrawal of spinal μ-opioid receptor (MOR)-coupled regulation of the release of endomorphin 2 (EM2). The release of this highly MOR-selective endogenous opioid from opioid-naive spinal tissue of male rats is subjected to MOR-coupled positive as well as negative modulation via cholera toxin-sensitive G(s) and pertussis toxin-sensitive G(i)/G(o), respectively. The net effect of this concomitant bidirectional modulation is inhibitory.

View Article and Find Full Text PDF

We previously demonstrated that the spinal cord κ-opioid receptor (KOR) and μ-opioid receptor (MOR) form heterodimers (KOR/MOR). KOR/MOR formation and the associated KOR dependency of spinal morphine antinociception are most robust during proestrus. Using Sprague Dawley rats, we now demonstrate that (1) spinal synthesis of estrogen is critical to these processes, and (2) blockade of either estrogen receptor (ER) α-, β-, or G-protein-coupled ER1 or progesterone receptor (PR) substantially reduces KOR/MOR and eliminates mediation by KOR of spinal morphine antinociception.

View Article and Find Full Text PDF

Sexually dimorphic nociception and opioid antinociception is very pervasive but poorly understood. We had demonstrated that spinal morphine antinociception in females, but not males, requires the concomitant activation of spinal μ- and κ-opioid receptors (MOR and KOR, respectively). This finding suggests an interrelationship between MOR and KOR in females that is not manifest in males.

View Article and Find Full Text PDF

In membranes obtained from mu-opioid receptor (MOR) expressing Chinese hamster ovary (CHO) cells (MOR-CHO), the MOR-selective agonist sufentanil produced a concentration-dependent stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate binding to G(s)alpha that was abolished by blocking MOR with naloxone. This unequivocally demonstrates the long-debated functionality of the previously described association of MOR with G(s)alpha. Several complementary observations indicate the relevance of caveolae to MOR-coupled G(s)alpha signaling.

View Article and Find Full Text PDF

Identification of adaptations to chronic morphine that are causally associated with opioid tolerance formation has long been intensely pursued by the opioid research community. There is an impressive array of components of signaling pathways that are influenced by chronic opioid administration. This underscores the importance to tolerance mechanisms of the complex interplay of cellular adaptations that are downstream from the opioid receptor.

View Article and Find Full Text PDF

Adaptations to long-term morphine treatment resulting in tolerance are protective by counteracting the consequences of sustained opioid receptor activation. Consequently, the manifestation of specific adenylyl cyclase (AC)-related neurochemical sequelae of long-term morphine treatment should depend on the consequences of short-term mu-opioid receptor (MOR) activation. We tested this by comparing complementary chemical sequelae of long-term morphine treatment among cells in which short-term MOR activation inhibited instead of stimulated AC activity.

View Article and Find Full Text PDF

The recent biochemical demonstration of the association of the mu-opioid receptor (MOR) with Galpha(s) that increases after long-term morphine treatment (Mol Brain Res 135:217-224, 2005) provides a new imperative for studying MOR-Galpha(s) interactions and the mechanisms that modulate it. A persisting challenge is to elucidate those neurochemical parameters modulated by long-term morphine treatment that facilitate MOR-Galpha(s) association. This study demonstrates that 1) Galpha(s) exists as a phosphoprotein, 2) the stoichiometry of Galpha(s) phosphorylation decreases after long-term morphine treatment, and 3) in vitro dephosphorylation of Galpha(s) increases its association with MOR.

View Article and Find Full Text PDF

Opioid desensitization/tolerance mechanisms have largely focused on adaptations that occur on the level of the mu-opioid receptor (MOR) itself. These include opioid receptor phosphorylation and ensuing trafficking events. Recent research, however, has revealed additional adaptations that occur downstream from the opioid receptor, which involve covalent modification of signaling molecules and altered associations among them.

View Article and Find Full Text PDF

Chronic morphine augments protein kinase C (PKC) phosphorylation of G(beta), which enhances the potency of G(betagamma) to stimulate adenylyl cyclase II (ACII) activity. The present study demonstrates an in vivo association between phosphorylated G(beta) and a specific PKC isoform, PKCgamma. We investigated the association of G(beta) and PKCgamma by assessing the ability of anti-PKCgamma antibodies to co-immunoprecipitate G(beta) from (32)P-radiolabeled Chinese Hamster Ovary cells stably transfected with a mu-opioid receptor (MOR-CHO).

View Article and Find Full Text PDF

Biochemical data indicate mu-opioid receptor (MOR) coupling predominantly to the G(i) and G(o) family. Additionally, MOR coupling to G(s) is suggested by pharmacological assessments that have revealed excitatory MOR effects, which are resistant to pertussis toxin and sensitive to cholera toxin. However, biochemical evidence for such interactions remains elusive; G(salpha) has not been shown to be present in immunoprecipitate obtained using anti-MOR antibodies.

View Article and Find Full Text PDF

Most formulations of the consequences of the persistent activation of opioid receptors have centred on the diminution or loss of opioid receptor-coupled signalling mechanisms. Activation of opposing compensatory circuits remains another of the adaptations proposed to underlie the extreme loss of the antinociceptive potency of narcotics following their chronic administration. Recent research has revealed that adaptations to chronic morphine involve not only the impairment of opioid receptor functionality but also the altered consequences of its G protein coupling.

View Article and Find Full Text PDF

Purpose: Tuberculosis (TB) elimination is an important US public health goal and improving the performance of TB surveillance and action and reducing the costs will help achieve it. But, there exists the need to better evaluate the performance and measure the costs.

Methods: We pilot tested an evaluation strategy in Hillsborough County, Florida using a conceptual framework of TB surveillance and action with eight core and four support activities.

View Article and Find Full Text PDF

This laboratory recently demonstrated a multiplicative interaction between the pelvic visceral afferent transmitter vasoactive intestinal polypeptide (VIP) and the delta-opioid receptor (DOR)-selective agonist [D-Pen2,5] enkephalin (DPDPE) to regulate cAMP levels in spinal cord [Brain Res. 959 (2003) 103]. Although DOR activation is required for the manifestation of the VIP-DPDPE facilitative interaction, its relevance to opioid antinociception remains unclear.

View Article and Find Full Text PDF

We previously demonstrated (Chakrabarti, et al., 2001) that in vivo phosphorylation of the Gbeta subunit of G proteins, via protein kinase A (PKA) and protein kinase C (PKC), is dramatically increased following chronic morphine. The present study investigates the PKC isoform selectivity of Gbeta phosphorylation and the consequences thereof on the ability of Gbetagamma to stimulate adenylyl cyclase II (ACII).

View Article and Find Full Text PDF

Phosphoinositide turnover and calcium mobilization are fundamental determinants of acute and chronic opioid effects. Phosphoinositide-specific phospholipase C (PLC) are key signaling enzymes that play a pivotal role in mediating opioid modulation of inositol trisphosphate production and cytosolic calcium distribution, substrates for many acute and chronic opioid effects. Notably, phosphorylation of the beta isoforms of PLC, by kinases that are up-regulated after chronic morphine, is a potent modality for their regulation.

View Article and Find Full Text PDF