Publications by authors named "Sumita Bhardwaj"

Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system-the SGMO Helper-with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency.

View Article and Find Full Text PDF

Unlabelled: The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP).

View Article and Find Full Text PDF

Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS.

View Article and Find Full Text PDF

Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure-activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano.

View Article and Find Full Text PDF

Because no drug exists that halts or even slows any neurodegenerative disease, developing effective therapeutics for any prion disorder is urgent. We recently reported two compounds (IND24 and IND81) with the 2-aminothiazole (2-AMT) chemical scaffold that almost doubled the incubation times in scrapie prion-infected, wild-type (wt) FVB mice when given in a liquid diet. Remarkably, oral prophylactic treatment with IND24 beginning 14 days prior to intracerebral prion inoculation extended survival from ∼120 days to over 450 days.

View Article and Find Full Text PDF

Treatment with the 2-aminothiazole IND24 extended the survival of mice infected with mouse-adapted scrapie but also resulted in the emergence of a drug-resistant prion strain. Here, we determined whether IND24 extended the survival of transgenic mice infected with prions that caused scrapie in sheep or prions that caused chronic wasting disease (CWD; hereafter "CWD prions") in deer, using 2 isolates for each disease. IND24 doubled the incubation times for mice infected with CWD prions but had no effect on the survival of those infected with scrapie prions.

View Article and Find Full Text PDF

Objective: Mutations in the gene encoding the prion protein (PrP) are responsible for approximately 10 to 15% of cases of prion disease in humans, including Creutzfeldt-Jakob disease (CJD). Here, we report on the discovery of a previously unreported C-terminal PrP mutation (A224V) in a CJD patient exhibiting a disease similar to the rare VV1 subtype of sporadic (s) CJD and investigate the role of this mutation in prion replication and transmission.

Methods: We generated transgenic (Tg) mice expressing human PrP with the V129 polymorphism and A224V mutation, denoted Tg(HuPrP,V129,A224V) mice, and inoculated them with different subtypes of sCJD prions.

View Article and Find Full Text PDF

There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt-Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice.

View Article and Find Full Text PDF

Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP.

View Article and Find Full Text PDF

The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain.

View Article and Find Full Text PDF