Does the Halbach magnetization rotation rule that is used for designing circular magnet arrays for achieving the best homogeneity hold also for an elliptical or other non-circular cross-section? In this article, it is shown that a new numerically optimized magnetization rotation rule can provide more than three orders of magnitude improvement in field homogeneity as compared to a Halbach configuration for elliptical systems. Further it is demonstrated that such optimized magnetization rules can be easily derived in an intuitive way by studying virtual permanent magnets of a similar cross-section as the desired magnet array. This is coined as a permanent magnet hypothesis.
View Article and Find Full Text PDFWe present a combination of a CNN-based encoder with an analytical forward map for solving inverse problems. We call it an encoder-analytic (EA) hybrid model. It does not require a dedicated training dataset and can train itself from the connected forward map in a direct learning fashion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Controlled electrobreakdown of graphene is important for the fabrication of stable nanometer-size tunnel gaps, large-scale graphene quantum dots, and nanoscale resistive switches, etc. However, owing to the complex thermal, electronic, and electrochemical processes at the nanoscale that dictate the rupture of graphene, it is difficult to generate conclusions from individual devices. We describe here a way to explore the statistical signature of the graphene electrobreakdown process.
View Article and Find Full Text PDFElectron-electron interactions are at the heart of chemistry and understanding how to control them is crucial for the development of molecular-scale electronic devices. Here, we investigate single-electron tunneling through a redox-active edge-fused porphyrin trimer and demonstrate that its transport behavior is well described by the Hubbard dimer model, providing insights into the role of electron-electron interactions in charge transport. In particular, we empirically determine the molecule's on-site and inter-site electron-electron repulsion energies, which are in good agreement with density functional calculations, and establish the molecular electronic structure within various oxidation states.
View Article and Find Full Text PDFThe aim of this work was to maximize the homogeneity of fixed- or variable-diameter Halbach array of discrete magnets by optimizing the angular rotation of individual magnets within each ring of the array. Numerical simulations have been performed for magnet arrays with various length:radius ratios (L/R) using a dipole-approximation model. These simulations used an uninformed random-search algorithm, with the initial state corresponding to the classical Halbach dipole configuration.
View Article and Find Full Text PDFConductance measurements in single-molecule junctions (SMJs) are on many occasions accompanied by inelastic spectroscopy and shot-noise measurements in order to obtain information about different vibration modes (or vibrons) and channels involved in the transport respectively. We have extended the single-molecule shot-noise measurements, which were previously performed at low bias, to high bias and we have studied the effects of these vibrons on the noise for a Deuterium (D) molecule between Pt leads. We report here two important findings from these measurements.
View Article and Find Full Text PDFA new way to control individual molecules and monoatomic chains is devised by preparing a human-machine augmented system in which the operator and the machine are connected by a real-time simulation. Here, a 3D motion control system is integrated with an ultra-high vacuum (UHV) low-temperature scanning tunnelling microscope (STM). Moreover, we coupled a real-time molecular dynamics (MD) simulation to the motion control system that provides a continuous visual feedback to the operator during atomic manipulation.
View Article and Find Full Text PDFMolecular electronics saw its birth with the idea to build electronic circuitry with single molecules as individual components. Even though commercial applications are still modest, it has served an important part in the study of fundamental physics at the scale of single atoms and molecules. It is now a routine procedure in many research groups around the world to connect a single molecule between two metallic leads.
View Article and Find Full Text PDFSince the work of Walter Schottky, it is known that the shot-noise power for a completely uncorrelated set of electrons increases linearly with the time-averaged current. At zero temperature and in the absence of inelastic scattering, the linearity relation between noise power and average current is quite robust, in many cases even for correlated electrons. Through high-bias shot-noise measurements on single Au atom point contacts, we find that the noise power in the high-bias regime shows highly nonlinear behavior even leading to a decrease in shot noise with voltage.
View Article and Find Full Text PDFShot noise measurements on atomic and molecular junctions provide rich information about the quantum transport properties of the junctions and on the inelastic scattering events taking place in the process. Dissipation at the nanoscale, a problem of central interest in nano-electronics, can be studied in its most explicit and simplified form. Here, we describe a measurement technique that permits extending previous noise measurements to a much higher frequency range, and to much higher bias voltage range, while maintaining a high accuracy in noise and conductance.
View Article and Find Full Text PDF