Studying chemical reactions, particularly in the gas phase, relies heavily on computing scattering matrix elements. These elements are essential for characterizing molecular reactions and accurately determining reaction probabilities. However, the intricate nature of quantum interactions poses challenges, necessitating the use of advanced mathematical models and computational approaches to tackle the inherent complexities.
View Article and Find Full Text PDFSpin liquids─an emergent, exotic collective phase of matter─have garnered enormous attention in recent years. While experimentally many prospective candidates have been proposed and realized, theoretically modeling real materials that display such behavior may pose serious challenges due to the inherently high correlation content of such phases. Over the last few decades, the second-quantum revolution has been the harbinger of a novel computational paradigm capable of initiating a foundational evolution in computational physics.
View Article and Find Full Text PDFMachine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes.
View Article and Find Full Text PDFInterferences emerge when multiple pathways coexist together, leading toward the same result. Here, we report a theoretical study for a reaction scheme that leads to constructive quantum interference in a photoassociation (PA) reaction of a Rb Bose-Einstein condensate where the reactant spin state is prepared in a coherent superposition of multiple bare spin states. This is achieved by changing the reactive scattering channel in the PA reaction.
View Article and Find Full Text PDFEntanglement is at the core of quantum information processing and may prove essential for quantum speed-up. Inspired by both theoretical and experimental studies of spin-momentum coupling in systems of ultra-cold atoms, we investigate the entanglement between the spin and momentum degrees of freedom of an optically trapped BEC of 87Rb atoms. We consider entanglement that arises due to the coupling of these degrees of freedom induced by Raman and radio-frequency fields and examine its dependence on the coupling parameters by evaluating von Neumann entropy as well as concurrence as measures of the entanglement attained.
View Article and Find Full Text PDF