Publications by authors named "Sumit Majumder"

Nature uses bottom-up self-assembly to build structures with remarkable complexity and functionality. Understanding how molecular-scale interactions translate to macroscopic properties remains a major challenge and requires systems that effectively bridge these two scales. Here, we generate DNA and RNA liquids with exquisite programmability in their material properties.

View Article and Find Full Text PDF

Neuromarketing is an emerging research field that aims to understand consumers' decision-making processes when choosing which product to buy. This information is highly sought after by businesses looking to improve their marketing strategies by understanding what leaves a positive or negative impression on consumers. It has the potential to revolutionize the marketing industry by enabling companies to offer engaging experiences, create more effective advertisements, avoid the wrong marketing strategies, and ultimately save millions of dollars for businesses.

View Article and Find Full Text PDF

Tailoring the precise construction of non-precious metals and carbon-based heterogeneous catalysts for electrochemical oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) is crucial for energy conversion applications. Herein, this work reports the composite of Ni doped Fe O (Ni-Fe O ) with mildly oxidized multi-walled CNT (O-CNT) as an outstanding Mott-Schottky catalyst for OER and MOR. O-CNT acts as a co-catalyst which effectively regulates the charge transfer in Ni-Fe O and thus enhances the electrocatalytic performance.

View Article and Find Full Text PDF

Wearable health monitoring devices allow for measuring physiological parameters without restricting individuals' daily activities, providing information that is reflective of an individual's health and well-being. However, these systems need to be accurate, power-efficient, unobtrusive and simple to use to enable a reliable, convenient, automatic and ubiquitous means of long-term health monitoring. One such system can be embedded in an insole to obtain physiological data from the plantar aspect of the foot that can be analyzed to gain insight into an individual's health.

View Article and Find Full Text PDF

Background: Thousands of Coronavirus Disease 2019 (COVID-19) patients have been discharged from hospitals Persistent follow-up studies are required to evaluate the prevalence of post-COVID-19 fibrosis.

Methods: This study involves 462 laboratory-confirmed patients with COVID-19 who were admitted to Shenzhen Third People's Hospital from January 11, 2020 to April 26, 2020. A total of 457 patients underwent thin-section chest CT scans during the hospitalization or after discharge to identify the pulmonary lesion.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic since early 2020. The coronavirus disease 2019 (COVID-19) has already caused more than three million deaths worldwide and affected people's physical and mental health. COVID-19 patients with mild symptoms are generally required to self-isolate and monitor for symptoms at least for 14 days in the case the disease turns towards severe complications.

View Article and Find Full Text PDF

In this issue of Molecular Cell, Jalihal et al. (2020) show that cell volume changes upon osmotic stress result in rapid and reversible condensation of numerous multivalent proteins.

View Article and Find Full Text PDF

Background: Remdesivir, a nucleotide analogue prodrug that inhibits viral RNA polymerases, has shown in vitro activity against SARS-CoV-2.

Methods: We provided remdesivir on a compassionate-use basis to patients hospitalized with Covid-19, the illness caused by infection with SARS-CoV-2. Patients were those with confirmed SARS-CoV-2 infection who had an oxygen saturation of 94% or less while they were breathing ambient air or who were receiving oxygen support.

View Article and Find Full Text PDF

Here, a well crystalline 3D flower-like structured MoS2 (~420 nm) has been successfully synthesized on a large scale by a simple hydrothermal technique. The evolution of morphology in the formation process has also been investigated. The crystallinity, purity, and morphology of the sample are characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, fieldemission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques.

View Article and Find Full Text PDF

The world's population is aging: the expansion of the older adult population with multiple physical and health issues is now a huge socio-economic concern worldwide. Among these issues, the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has severe social, mental and physical consequences. Human body joint monitoring and early diagnosis of these disorders will be a strong and effective solution to this problem.

View Article and Find Full Text PDF

Over the past few decades, we have witnessed a dramatic rise in life expectancy owing to significant advances in medical science and technology, medicine as well as increased awareness about nutrition, education, and environmental and personal hygiene. Consequently, the elderly population in many countries are expected to rise rapidly in the coming years. A rapidly rising elderly demographics is expected to adversely affect the socioeconomic systems of many nations in terms of costs associated with their healthcare and wellbeing.

View Article and Find Full Text PDF

Electrocardiography (ECG) is the most common and extensively used vital sign monitoring method in modern healthcare systems. Different designs of ambulatory ECG systems were developed as alternatives to the commonly used 12-lead clinical ECG systems. These designs primarily focus on portability and user convenience, while maintaining signal integrity and lowering power consumption.

View Article and Find Full Text PDF

Superoleophobic surfaces exhibiting tunable wettability are prepared by the combination of simple spray coating of Ultra Violet (UV) responsive titania nanoparticles and a low surface energy coating of a self-assembled monolayer (SAM) of 1,1,2,2-perflurodecyltrichlorosilane (PFDTS). Spray coating creates random micron-sized roughness with reentrant geometry, a necessary requirement for the superoleophobic surface, and a porous network at the nanometer size level, confirmed by the field emission scanning electron microscope (FE-SEM) images. By employing the rough surface and a low surface energy monolayer, the substrates possess superhydrophobicity with a water ( = 72 mN m) contact angle of 163° and superoleophobicity with a decane ( = 23 mN m) contact angle of 144°.

View Article and Find Full Text PDF

Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions.

View Article and Find Full Text PDF

Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being.

View Article and Find Full Text PDF