Maize is a highly versatile crop holding significant importance in global food, feed and nutritional security. Grain yield is a complex trait and difficult to improve without targeting the improvement of grain yield attributing traits, which are relatively less complex in nature. Hence, considering the erosion in genetic diversity, there is an urgent need to use wild relatives for genetic diversification and unravel the genomic regions for grain yield attributing traits in maize.
View Article and Find Full Text PDFAdvances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping.
View Article and Find Full Text PDFIn recent years, deep learning techniques have shown impressive performance in the field of identification of diseases of crops using digital images. In this work, a deep learning approach for identification of in-field diseased images of maize crop has been proposed. The images were captured from experimental fields of ICAR-IIMR, Ludhiana, India, targeted to three important diseases viz.
View Article and Find Full Text PDF