Plant photosynthetic machinery is the main source of acquisition and conversion of solar energy to chemical energy with the capacity for autonomous self-repair. However, the major limitation of the chloroplast photosystem is that it can absorb light only within the visible range of the spectrum, which is roughly 50% of the incident solar radiation. Moreover, the photosynthetic apparatus is saturated by less than 10% of available sunlight.
View Article and Find Full Text PDFAims: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well.
Methods And Results: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger).
Modern agriculture has entered an era of technological plateau where intervention of smarter technology like nanotechnology is imminently required for making this sector economically and environmentally sustainable. Throughout the world, researchers are trying to exploit the novel properties of several nanomaterials to make agricultural practices more efficient. Core/shell nanoparticles (CSNs) have attracted much attention because of their multiple attractive novel features like high catalytic, optical, and electronic properties for which they are being widely used in sensing, imaging, and medical applications.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2015
Environmental pollution is one of the greatest problems that the world is facing today, and it is increasing with every passing year and causing grave and irreparable damage to the earth. Nanomaterials, because of their novel physical and chemical characteristics, have great promise to combat environment pollution. Nanotechnology is being used to devise pollution sensor.
View Article and Find Full Text PDFIn spite of devastating impact of mosquito borne pathogens on humans, widespread resistance to chemical insecticides and environmental concerns from residual toxicity limit mosquito control strategies. We tested three nanoparticles, chitosan, carbon quantum dot (CQD), and silica complexed with dsRNA, to target two mosquito genes (SNF7 and SRC) for controlling Aedes aegypti larvae. Relative mRNA levels were quantified using qRT-PCR to evaluate knockdown efficiency in nanoparticle-dsRNA treated larvae.
View Article and Find Full Text PDFManganese (Mn) is an essential element for plants which intervenes mainly in photosynthesis. In this study we establish that manganese nanoparticles (MnNP) work as a better micronutrient than commercially available manganese salt, MnSO4 (MS) at recommended doses on leguminous plant mung bean (Vigna radiata) under laboratory condition. At higher doses it does not impart toxicity to the plant unlike MS.
View Article and Find Full Text PDFMorphological changes in the polyhedra of the Bombyx mori L. nuclear polyhedrosis virus (BmNPV), a baculovirus causing the deadly grasserie disease in silkworms, brought about by mixing with lipophilically capped amorphous silica nanoparticles (LASN, average size 10 ± 2 nm) were studied with scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. SEM shows that the regular octagonal polyhedra facets are replaced by a larger number of newly formed irregular ones.
View Article and Find Full Text PDFGrasserie, a polyorganotrophic disease caused by Bombyx mori nucleopolyhedrovirus (BmNPV), accounts for lethal infection to fifth instar silkworm larvae. It was found that nanoparticle (NP)-induced morphological transformation of BmNPV polyhedra could reduce the infectivity of BmNPV both in cell line and in silkworm larvae. Initially, 11 NPs were screened for evaluation of their nature of interaction with polyhedra surface through scanning electron microscopy.
View Article and Find Full Text PDFNowadays gold nanoparticle (GNP) is increasingly being used in drug delivery and diagnostics. Here we have reported a comparative analysis of detailed stability and toxicity (in vitro and in vivo) profile of three water soluble spherical GNPs, having nearly similar size, but the surfaces of which were modified with three different capping materials aspartic acid (GNPA), trisodium citrate dihydrate (GNPC) or bovine serum albumin (GNPB). Spectral analyses on the stability of these GNPs revealed that depending on the nature of capping agents, GNPs behave differently at different environmental modalities like wide range of pH, high salt concentrations, or in solutions and buffers of biological usage.
View Article and Find Full Text PDFDespite discovery of the pathogen more than 100 years ago, tuberculosis (TB) continues to be a major killer disease worldwide. Currently a third of world population is infected and multiple-drug-resistant (mdr) TB registers maximum mortality by a single pathogen. Nanomedicine provides enormous opportunity for developing novel drugs.
View Article and Find Full Text PDF