Publications by authors named "Sumiran Pujari"

The ground state of a one-dimensional spin- uniform antiferromagnetic Heisenberg chain (AfHc) is a Tomonaga-Luttinger liquid which is quantum-critical with respect to applied magnetic fields up to a saturation field beyond which it transforms to a fully polarized state. Wilson ratio has been predicted to be a good indicator for demarcating these phases [Phys. Rev.

View Article and Find Full Text PDF

Topological insulator-based methods underpin the topological classification of gapped bands, including those surrounding semimetallic nodal defects. However, multiple bands with gap-closing points can also possess nontrivial topology. We construct a general wave-function-based "punctured-Chern" invariant to capture such topology.

View Article and Find Full Text PDF

The observation of Majorana fermions as collective excitations in condensed-matter systems is an ongoing quest, and several state-of-the-art experiments have been performed in the last decade. As a potential avenue in this direction, we simulate the high-harmonic spectrum of Kitaev's superconducting chain model that hosts Majorana edge modes in its topological phase. It is well-known that this system exhibits a topological-trivial superconducting phase transition.

View Article and Find Full Text PDF

Using renormalization group (RG) analyses and Monte Carlo (MC) simulations, we study the fully packed dimer model on the bilayer square lattice with fugacity equal to z (1) for interlayer (intralayer) dimers, and intralayer interaction V between neighboring parallel dimers on any elementary plaquette in either layer. For a range of not-too-large z>0 and repulsive interactions 0 View Article and Find Full Text PDF

We report gapless quantum spin liquid behavior in the layered triangular Sr_{3}CuSb_{2}O_{9} system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well separated by Sb planes. Muon spin relaxation measurements show that the S=1/2 moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature θ_{CW}≃-143  K as extracted from the bulk susceptibility.

View Article and Find Full Text PDF

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134  K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics.

View Article and Find Full Text PDF

We introduce a quantum Monte Carlo (QMC) method for efficient sign-problem-free simulations of a broad class of frustrated S=1/2 antiferromagnets using the basis of spin eigenstates of clusters to avoid the severe sign problem faced by other QMC methods. We demonstrate the utility of the method in several cases with competing exchange interactions and flag important limitations as well as possible extensions of the method.

View Article and Find Full Text PDF

We revisit the effect of local interactions on the quadratic band touching (QBT) of the Bernal honeycomb bilayer model using renormalization group (RG) arguments and quantum Monte Carlo (QMC) simulations. We present a RG argument which predicts, contrary to previous studies, that weak interactions do not flow to strong coupling even if the free dispersion has a QBT. Instead, they generate a linear term in the dispersion, which causes the interactions to flow back to weak coupling.

View Article and Find Full Text PDF

We study the spin-1/2 quantum Heisenberg antiferromagnet on a Bethe lattice diluted to the percolation threshold. Dilution creates areas of even or odd sublattice imbalance resulting in "dangling spins" [L. Wang and A.

View Article and Find Full Text PDF

We study a spin-1/2 SU(2) model on the honeycomb lattice with nearest-neighbor antiferromagnetic exchange J that favors Néel order and competing six-spin interactions Q that favor a valence-bond-solid (VBS) state in which the bond energies order at the "columnar" wave vector K=(2π/3,-2π/3). We present quantum Monte Carlo evidence for a direct continuous quantum phase transition between Néel and VBS states, with exponents and logarithmic violations of scaling consistent with those at analogous deconfined critical points on the square lattice. Although this strongly suggests a description in terms of deconfined criticality, the measured threefold anisotropy of the phase of the VBS order parameter shows unusual near-marginal behavior at the critical point.

View Article and Find Full Text PDF