Publications by authors named "Suming Weng"

Article Synopsis
  • Relativistic positron sources with high spin polarization are crucial for advancements in nuclear and particle physics, but producing dense polarized positrons has been difficult.
  • The authors describe an effective method using a high-density electron beam directed at a solid target, which induces strong magnetic fields and allows for efficient positron production.
  • Through simulations, they show that this method can generate a dense positron beam with over 40% polarization and significant charge, paving the way for new research in quantum electrodynamics and enhanced positron sources.
View Article and Find Full Text PDF

Unlabelled: FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides.

View Article and Find Full Text PDF

The copropagation of two relativistic intense laser beams with orthogonal polarization in a parabolic plasma channel is studied analytically and numerically. A set of coupled equations for the evolution of the laser spot sizes and transverse centroids are derived by use of the variational approach. It is shown that the centroids of the two beams can spiral and oscillate around each other along the channel axis, where the characteristic frequency is determined both by the laser and plasma parameters.

View Article and Find Full Text PDF

Tunable X-ray sources from a laser-driven wakefield have wide applications. However, due to the difficulty of electron dynamics control, currently the tunability of laser wakefield-based X-ray sources is still difficult. By using three-dimensional particle-in-cell simulations, we propose a scheme to realize controllable electron dynamics and X-ray radiation.

View Article and Find Full Text PDF

A type of plasma-based optical modulator is proposed for the generation of broadband high-power laser pulses. Compared with normal optical components, plasma-based optical components can sustain much higher laser intensities. Here we illustrate via theory and simulation that a high-power sub-relativistic laser pulse can be self-modulated to a broad bandwidth over 100% after it passes through a tenuous plasma.

View Article and Find Full Text PDF

Recent developments in laser-wakefield accelerators have led to compact ultrashort X/γ-ray sources that can deliver peak brilliance comparable with conventional synchrotron sources. Such sources normally have low efficiencies and are limited to 10 photons/shot in the keV to MeV range. We present a novel scheme to efficiently produce collimated ultrabright γ-ray beams with photon energies tunable up to GeV by focusing a multi-petawatt laser pulse into a two-stage wakefield accelerator.

View Article and Find Full Text PDF

Ultrashort intense optical pulses in the mid-infrared (mid-IR) region are very important for broad applications ranging from super-resolution spectroscopy to attosecond X-ray pulse generation and particle acceleration. However, currently, it is still difficult to produce few-cycle mid-IR pulses of relativistic intensities using standard optical techniques. Here, we propose and numerically demonstrate a novel scheme to produce these mid-IR pulses based on laser-driven plasma optical modulation.

View Article and Find Full Text PDF

The interaction between laser light and an underdense plasma immersed in a spatio-temporally tunable magnetic field is studied analytically and numerically. The transversely nonuniform magnetic field can serve as a magnetic channel, which can act on laser propagation in a similar way to the density channel. The envelope equation for laser intensity evolution is derived, which contains the effects of magnetic channel and relativistic self-focusing.

View Article and Find Full Text PDF

With increasing laser peak power, the generation and manipulation of high-power laser pulses become a growing challenge for conventional solid-state optics due to their limited damage threshold. As a result, plasma-based optical components that can sustain extremely high fields are attracting increasing interest. Here, we propose a type of plasma waveplate based on magneto-optical birefringence under a transverse magnetic field, which can work under extremely high laser power.

View Article and Find Full Text PDF

A multi-channel Thomson parabola spectrometer was designed and employed to diagnose ion beams driven by intense laser pulses. Angular-resolved energy spectra for different ion species can be measured in a single shot. It contains parallel dipole magnets and wedged electrodes to fit ion dispersion of different charge-to-mass ratios.

View Article and Find Full Text PDF

Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets.

View Article and Find Full Text PDF

A pair of collisionless shocks that propagate in the opposite directions are firstly observed in the interactions of laser-produced counter-streaming flows. The flows are generated by irradiating a pair of opposing copper foils with eight laser beams at the Shenguang-II (SG-II) laser facility. The experimental results indicate that the excited shocks are collisionless and electrostatic, in good agreement with the theoretical model of electrostatic shock.

View Article and Find Full Text PDF

Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side.

View Article and Find Full Text PDF

Inverse bremsstrahlung (IB) absorption and evolution of the electron distribution function (EDF) in a wide laser intensity range (10;{12}-10;{17} W/cm;{2}) have been studied systematically by a two velocity-dimension Fokker-Planck code. It is found that Langdon's IB operator overestimates the absorption rate at high laser intensity, consequently with an overdistorted non-Maxwellian EDF. According to the small anisotropy of EDF in the oscillation frame, we introduce an IB operator which is similar to Langdon's but without the low laser intensity limit.

View Article and Find Full Text PDF

The acceleration of ions in collisionless electrostatic shocks and solitary waves, driven by ultrashort intense laser pulses in a thin solid target under different conditions, is investigated theoretically. When a shock is formed, ions with certain initial velocities inside the target can be accelerated by the electrostatic field at the shock front to twice the shock speed. When a solitary wave is formed, only ions located at the rear surface of the target can be accelerated by the solitary wave together with the sheath field formed there.

View Article and Find Full Text PDF