CTnDOT is an integrated conjugative element found in species. CTnDOT contains and transfers antibiotic resistance genes. The element integrates into and excises from the host chromosome via a Holliday junction (HJ) intermediate as part of a site-specific recombination mechanism.
View Article and Find Full Text PDFExcision of the conjugative transposon CTnDOT from the chromosome of Bacteroides spp. involves four CTnDOT-encoded proteins: IntDOT, Xis2c, Xis2d, and Exc along with a host factor. These proteins form excisive intasomes on the attR and attL sites which undergo synapsis and recombination to form the attDOT and attB sites.
View Article and Find Full Text PDFIntegrative and conjugative elements (ICEs), formerly called conjugative transposons, have been implicated in the proliferation of antibiotic resistance genes. CTnDOT is an extensively studied ICE found in Bacteroides spp. In addition to carrying resistance genes to both erythromycin and tetracycline, CTnDOT carries a gene that encodes a tyrosine recombinase called IntDOT that catalyzes integration into and excision out of the bacterial host chromosome.
View Article and Find Full Text PDFIntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known.
View Article and Find Full Text PDFThe Bacteroides conjugative transposon CTnDOT encodes an integrase, IntDOT, which is a member of the tyrosine recombinase family. Other members of this group share a strict requirement for sequence identity within the region of strand exchange, called the overlap region. Tyrosine recombinases catalyze recombination by making an initial cleavage, strand exchange and ligation, followed by strand swapping isomerization requiring sequence identity in the overlap region, followed by the second cleavage, strand exchange and ligation.
View Article and Find Full Text PDFAlthough the integrase (IntDOT) of the Bacteroides conjugative transposon CTnDOT has been classified as a member of the tyrosine recombinase family, the reaction it catalyzes appears to differ in some features from reactions catalyzed by other tyrosine recombinases. We tested the ability of IntDOT to cleave and ligate activated attDOT substrates in the presence of mismatches. Unlike other tyrosine recombinases, the results revealed that IntDOT is able to perform ligation reactions even when all the bases within the crossover region are mispaired.
View Article and Find Full Text PDFHigh-resolution analyses of lake sediment from southwestern Alaska reveal cyclic variations in climate and ecosystems during the Holocene. These variations occurred with periodicities similar to those of solar activity and appear to be coherent with time series of the cosmogenic nuclides 14C and 10Be as well as North Atlantic drift ice. Our results imply that small variations in solar irradiance induced pronounced cyclic changes in northern high-latitude environments.
View Article and Find Full Text PDF