Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies.
View Article and Find Full Text PDFIntravenous fluids are being widely used in patients of all ages for preventing or treating dehydration in the intensive care units, surgeries in the operation rooms, or administering chemotherapeutic drugs at hospitals. Dextrose, Ringer, and NaCl solutions are widely received as intravenous fluids by hospitalized patients. Despite their widespread administration for over 100 years, studies on their influences on different cell types have been very limited.
View Article and Find Full Text PDFAntibiotic resistance is a global health threat. We urgently need better strategies to improve antibiotic use to combat antibiotic resistance. Currently, there are a limited number of antibiotics in the treatment repertoire of existing bacterial infections.
View Article and Find Full Text PDFGlioblastoma multiforme is one of the most aggressive malignant primary brain tumors. To design effective treatment strategies, we need to better understand the behavior of glioma cells while maintaining their genetic and phenotypic stability. Here, we investigated the deformation and migration profile of U87 Glioma cells under the influence of dielectrophoretic forces.
View Article and Find Full Text PDFTransition of rapid, ready-to-use, and low-cost nucleic acid-based detection technologies from laboratories to points of sample collection has drastically accelerated. However, most of these approaches are still incapable of diagnosis starting from sampling through nucleic acid isolation and detection in the field. Here we developed a simple, portable, low-cost, colorimetric, and remotely controllable platform for reliable, high-throughput, and rapid diagnosis using loop-mediated isothermal amplification (LAMP) assays.
View Article and Find Full Text PDFGenetically Modified (GM) foods are becoming the future of agriculture on surviving global natural disasters and climate change by their enhanced production efficiency and improved functional properties. On the other hand, their adverse health and environmental effects, ample evidence on transgene leakage of Genetically Modified Organisms (GMOs) to crops have raised questions on their benefits and risks. Consequently, low-cost, reliable, rapid, and practical detection of GMOs have been important.
View Article and Find Full Text PDF