Objective: To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immortal human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis.
Methods: 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
August 2005
Objective: To provide evidence for illustrating the molecular mechanism of nickel carcinogenesis, and to identify the differential expression of protein in crystalline NiS-induced neoplastic transformation of human bronchial epithelial cell by proteomics technology.
Methods: Two dimensional electrophoresis (2-DE) and the ImageMaster 3.10 software were used to analyze the differential expression of protein, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) combined with database search was applied to identify protein peroxiredoxin 2 (PDX2) related to malignant transformation.
Zhonghua Yu Fang Yi Xue Za Zhi
September 2003
Objective: To study the inhibitory effect of chlorophyllin (CHL) on trans-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) induced malignant transformation in human bronchial epithelial cell line (16HBE).
Methods: 10, 50 or 100 micro mol/L CHL were added into the media during the cells transformation induced by BPDE, and the malignant degree of transformed cells were identified by the ConA agglutination test and the assay for anchorage-independent growth and tumorigenicity.
Results: After the cells were cultured for 25 times, the time of cells agglutination in groups treated with both CHL and BPDE was increased significantly; the colony formation efficiency in soft agar in groups treated with both CHL and BPDE (7.
Zhonghua Zhong Liu Za Zhi
January 2003
Objective: To detect the alteration of fragile histidine triad (FHIT) gene and p16 gene during malignant transformation of immortal human bronchial epithelial cell line (16HBE) induced by crystalline nickel sulfide, and study the molecular mechanism of nickel carcinogenesis.
Methods: Malignant transformed cells and tumorigenic cells were examined for the alteration of FHIT gene and p16 gene by RT-PCR, DNA sequencing and silver staining PCR-SSCP.
Results: Compared with those of control 16HBE, neither mutation of exon2 or exon2-3, abnormal expression in p16 gene nor mutation of FHIT exon5, 6, 7 and 8, exon1-4 or exon5-9 were observed in transformed cells and tumorigenic cells.
Objective: To clone differentially expressed cDNA sequences involved in malignant transformation induced by benzo(a)pyrene metabolite dihydroxyepoxy benzo pyrene (BPDE).
Method: The malignant transformation of human bronchial epithelial cell line 16HBE induced by BPDE in vitro was used as a model for comparing gene expression between the transformed cells and controls. cDNA representational difference analysis (cDNA-RDA) was performed to isolate differentially expressed cDNA fragment in transformed cells.