t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions.
View Article and Find Full Text PDFIncreased infertility in humans is attributed to the increased use of environmental chemicals in the last several decades. Various studies have identified pesticides as one of the causes of reproductive toxicity. In a previous study, infertility was observed in male mice due to testicular atrophy and decreased sperm count when a sublethal dose of endosulfan (3 mg/kg) with a serum concentration of 23 μg/L was used.
View Article and Find Full Text PDFHaving its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases.
View Article and Find Full Text PDFMitochondria possess their own genome which can be replicated independently of nuclear DNA. Mitochondria being the powerhouse of the cell produce reactive oxygen species, due to which the mitochondrial genome is frequently exposed to oxidative damage. Previous studies have demonstrated an association of mitochondrial deletions to aging and human disorders.
View Article and Find Full Text PDFMitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility.
View Article and Find Full Text PDFDNA, the fundamental unit of human cell, generally exists in Watson-Crick base-paired B-DNA form. Often, DNA folds into non-B forms, such as four-stranded G-quadruplexes. It is generally believed that ionizing radiation (IR) induces DNA strand-breaks in a random manner.
View Article and Find Full Text PDFEfficient DNA repair is indispensable for maintaining genomic integrity in humans. Cancer associated deletions and mutations are mainly due to misrepaired DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ) and homologous recombination (HR) are two major DSB repair pathways in humans.
View Article and Find Full Text PDFMitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are mostly repaired by nonhomologous end joining (NHEJ) and homologous recombination (HR) in higher eukaryotes. In contrast, HR-mediated DSB repair is the major double-strand break repair pathway in lower order organisms such as bacteria and yeast. Penaeus monodon, commonly known as black tiger shrimp, is one of the economically important crustaceans facing large-scale mortality due to exposure to infectious diseases.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs).
View Article and Find Full Text PDF