Background: The development of Raspberry Pi-based recording devices for video analyses of drug self-administration studies has been shown to be promising in terms of affordability, customizability, and capacity to extract in-depth behavioral patterns. Yet, most video recording systems are limited to a few cameras making them incompatible with large-scale studies.
New Method: We expanded the PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture) recording system by increasing its scale, modifying its code, and adding equipment to accommodate large-scale video acquisition, accompanied by data on throughput capabilities, video fidelity, synchronicity of devices, and comparisons between Raspberry Pi 3B+ and 4B models.
Background: The development of Raspberry Pi-based recording devices for video analyses of drug self-administration studies has shown to be promising in terms of affordability, customizability, and capacity to extract in-depth behavioral patterns. Yet, most video recording systems are limited to a few cameras making them incompatible with large-scale studies.
New Method: We expanded the PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture) recording system by increasing its scale, modifying its code, and adding equipment to accommodate large-scale video acquisition, accompanied by data on the throughput capabilities, video fidelity, synchronicity of devices, and comparisons between the Raspberry Pi 3B+ and 4B models.