Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress.
View Article and Find Full Text PDFThe Amino Acid-Polyamine-Organocation (APC) family transporters containing BAT/ACT (amino acid/choline transporters), PHS/LAT (polyamine H+-symporters) and CAT (cationic amino acid transporters) type transporters are ubiquitously reported in plants. ACT (containing BAT genes) which mediates bidirectional amino acid transport has been poorly characterized till date. In the present study, bioinformatics-based analytical studies have been performed to characterize the structural, functional, and evolutionary features of seven ACT/BAT transporters in the model crop Oryza sativa.
View Article and Find Full Text PDFPlants' reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions.
View Article and Find Full Text PDFBackground: Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.
View Article and Find Full Text PDFThe insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi.
View Article and Find Full Text PDFFusarium oxysporum is known to cause vascular wilt and root rot of many important plants. Although extensive studies have been reported for the model plant Arabidopsis thaliana (L.) Heynh.
View Article and Find Full Text PDFReactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.
View Article and Find Full Text PDFTwo-dimensional electrophoresis and mass spectrometry are undoubtedly two essential tools popularly used in proteomic analyses. Utilization of these techniques however largely depends on efficient and optimized sample preparation, regarded as one of the most crucial steps for recovering maximum amount of reliable information. The present study highlights the optimization of an effective and efficient protocol, capable of extraction of root proteins from recalcitrant phenolic rich tissues of chickpea.
View Article and Find Full Text PDFBackground: Xanthomonas oryzae pv oryzae is a devastating pathogen of rice and has been extensively studied as a model pathogen of monocotyledons. Expressional studies in both the contenders have been undertaken in past to understand the molecular mechanism underlying the compatible and incompatible interactions in the pathosystem. Continuous update on database and gene annotations necessitates constant updating on the roles of the new entities as well as reinterpretation of regulations of the previous ones.
View Article and Find Full Text PDFPlant responses are coordinately controlled by both external and internal signals. Apt perception of pathogen attack and its appropriate conversion to internal signals ultimately determine the outcome of innate immunity. The present review predicts the involvement of unconventional 'Guard/Decoy Model' in chickpea-Fusarium encounter.
View Article and Find Full Text PDFBackground: Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species) generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host.
Methodology/principal Findings: Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue.
Wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris is one of the most severe diseases of chickpea throughout the world.
View Article and Find Full Text PDF