Publications by authors named "Sumanth Kambalimath"

Mild stresses induce "acquired tolerance traits" (ATTs) that provide tolerance when stress becomes severe. Here, we identified the genetic variability in ATTs among a panel of rice germplasm accessions and demonstrated their relevance in protecting growth and productivity under water-limited conditions. Diverse approaches, including physiological screens, association mapping and metabolomics, were adopted and revealed 43 significant marker-trait associations.

View Article and Find Full Text PDF

Saving water and enhancing rice productivity are consensually the most important research goals globally. While increasing canopy cover would enhance growth rates by higher photosynthetic carbon gain, an accompanied increase in transpiration would have a negative impact on saving water as well as for sustainability under water-limited conditions. Increased water use efficiency (WUE) by virtue of higher carbon assimilatory capacity can significantly circumvent this trade-off.

View Article and Find Full Text PDF

Understanding the molecular and physiological mechanisms of trait diversity is crucial for crop improvement to achieve drought adaptation. Root traits such as high biomass and/or deep rootedness are undoubtedly important drought adaptive traits. The major aim of this investigation was to functionally characterize a set of ethyl methane sulfonate-induced rice mutants for root traits.

View Article and Find Full Text PDF

Reduced spikelet fertility appears to be one of the major factors responsible for the decreased rice grain yield when cultivated under semi irrigated aerobic condition. We demonstrate that genotypes with better root systems coupled with higher cellular level tolerance (CLT) can significantly improve spikelet fertility under semi-irrigated aerobic condition in the field. A set of 20 contrasting rice accessions differing in root traits and CLT with significant molecular diversity were subjected to specific soil moisture regimes during a period between five days before and 10 days after anthesis.

View Article and Find Full Text PDF