Tc is one of the potentially toxic radioactive substances owing to its long half-life and a high degree of environmental mobility. Hence, the sequestration of Tc from radioactive waste has become enormously important and a contemporary research priority. However, selective extraction of this species in its stable oxoanionic form (TcO ) is very challenging on account of bottlenecks such as low charge density, less hydrophilic nature, Herein, an ultrathin hybrid composite material has been strategically designed and fabricated by covalent anchoring of a chemically stable amino functionalized nanosized cationic metal-organic polyhedron with a positively charged robust ionic covalent organic framework.
View Article and Find Full Text PDFConsidering the importance of sustainable nuclear energy, effective management of radioactive nuclear waste, such as sequestration of radioiodine has inflicted a significant research attention in recent years. Despite the fact that materials have been reported for the adsorption of iodine, development of effective adsorbent with significantly improved segregation properties for widespread practical applications still remain exceedingly difficult due to lack of proper design strategies. Herein, utilizing unique hybridization synthetic strategy, a composite crystalline aerogel material has been fabricated by covalent stepping of an amino-functionalized stable cationic discrete metal-organic polyhedra with dual-pore containing imine-functionalized covalent organic framework.
View Article and Find Full Text PDFOne-pot cascade catalytic reactions easily allow the circumvention of pitfalls of traditional catalytic reactions, such as multi-step syntheses, longer duration, waste generation, and high operational cost. Despite advances in this area, the facile assimilation of chemically antagonistic bifunctional sites in close proximity inside a well-defined scaffold a process of rational structural design still remains a challenge. Herein, we report the successful fusion of incompatible acid-base active sites in an ionic porous organic polymer (iPOP), 120-MI@OH, a simple ion-exchange strategy.
View Article and Find Full Text PDFAggregation-induced catalyst deactivation during the reaction in supported metal catalysts prevails as one of the pitfalls toward their practical implementation. Herein, a homogeneously dispersed palladium-coordinated N-heterocyclic carbene (NHC) was strategically integrated inside a microporous hyper-cross-linked polymer via post-synthesis structural modulation. Successful immobilization of spatially isolated Pd (II) units onto the polymer scaffold yielded highly robust heterogeneous catalysts 120-MI@Pd NHC and 120-EI@Pd NHC, respectively.
View Article and Find Full Text PDFIn case of pollutant segregation, fast mass diffusion is a fundamental criterion in order to achieve improved performance. The rapid mass transport through porous materials can be achieved by availing large open pores followed by easy and complete accessibility of functional sites. Inducing macroporosity into such materials could serve as ideal solution providing access to large macropores that offer unhindered transport of analyte and full exposure to interactive sites.
View Article and Find Full Text PDFLarge-scale nuclear power plant production of iodine radionuclides ( I, I) pose huge threat in the events of nuclear disaster. Effective removal of radioiodine from nuclear waste is one of the most critical challenge because of the drawbacks of state-of-the-art adsorbents such as high cost, low uptake capacity and non-recyclability. Herein, two hydroxy-functionalized (-OH) hypercrosslinked polymers (HCPs), namely HCP-91 and HCP-92, have been synthesized and employed towards capture of iodine.
View Article and Find Full Text PDFA cationic microporous composite polymer (120-TMA@Fe) bearing free exchangeable chloride anions alongside easy magnetic separation was crafted through post-polymerization structure modulation. The precursor polymer 120-Cl was synthesized via an "external cross-linking" strategy in a straightforward one-pot Friedel-Crafts reaction. Subsequently, a cationic network accommodating magnetic FeO nanoparticles, viz.
View Article and Find Full Text PDFLarge-scale generation of radioactive iodine (I, I) in nuclear power plants pose a critical threat in the event of fallout, thus rendering the development of iodine sequestering materials (from both the vapor and aqueous medium) highly pivotal. Herein, we report two chemically stable ionic polymers containing multiple binding sites, including phenyl rings, imidazolium cations, and bromide anions, which in synergy promote adsorption of iodine/triiodide anions. In brief, exceptional iodine uptake (from the vapor phase) was observed at nuclear fuel reprocessing conditions.
View Article and Find Full Text PDFFabricating new and efficient materials aimed at containment of water contamination, in particular removing toxic heavy metal based oxo-anions (e. g. CrO , TcO ) holds paramount importance.
View Article and Find Full Text PDFWater pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.
View Article and Find Full Text PDFWater pollution and crisis of freshwater is one of the most alarming concern globally, which threatens the development and survival of living beings. Recycling of contaminated water has been the prime demand of 21 century as the area of contamination in natural waterbodies increasing rapidly worldwide. Detoxification and purification of wastewater via adsorptive removal technology has been proven to be more efficient because of it's simplicity, lesser complexity and cost-effectiveness.
View Article and Find Full Text PDFWater contamination due to heavy metal-based toxic oxo-anions (such as CrO and TcO) is a critical environmental concern that demands immediate mitigation. Herein, we present an effort to counter this issue by a novel chemically stable cationic metal-organic framework (iMOF-2C) with strategic utilization of a ligand with hydrophobic core, known to facilitate such oxo-anion capture process. Moreover, the compound exhibited very fast sieving kinetics for such oxo-anions and a very high uptake capacity for CrO (476.
View Article and Find Full Text PDF