Publications by authors named "Sumana Srinivasan"

The adult mammary gland is maintained by lineage-restricted progenitor cells through pregnancy, lactation, involution, and menopause. Injury resolution, transplantation-associated mammary gland reconstitution, and tumorigenesis are unique exceptions, wherein mammary basal cells gain the ability to reprogram to a luminal state. Here, we leverage newly developed cell-identity reporter mouse strains, and time-resolved single-cell epigenetic and transcriptomic analyses to decipher the molecular programs underlying basal-to-luminal fate switching .

View Article and Find Full Text PDF

Background: Biomedical research often involves contextual integration of multimodal and multiomic data in search of mechanisms for improved diagnosis, treatment, and monitoring. Researchers need to access information from diverse sources, comprising data in various and sometimes incongruent formats. The downstream processing of the data to decipher mechanisms by reconstructing networks and developing quantitative models warrants considerable effort.

View Article and Find Full Text PDF

Evolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions.

View Article and Find Full Text PDF

Over the recent years, FSHR has become an important target for development of fertility regulating agents, as impairment of FSH-FSHR interaction can lead to subfertility or infertility. In our previous study, we identified a 9-mer peptide (FSHβ (89-97)) that exhibited FSHR antagonist activity. The histopathological and biochemical observations indicated, in addition to FSHR antagonism, a striking resemblance to a PCOS-like state.

View Article and Find Full Text PDF

Global transcriptional regulators coordinate complex genetic interactions that bestow better adaptability for an organism against external and internal perturbations. These transcriptional regulators are known to control an enormous array of genes with diverse functionalities. However, regulator-driven molecular mechanisms that underpin precisely tuned translational and metabolic processes conducive for rapid exponential growth remain obscure.

View Article and Find Full Text PDF

IL-9‒producing T cells are present in healthy skin as well as in the cutaneous lesions of inflammatory diseases and cancers. However, the roles of IL-9 in human skin during homeostasis and in the pathogenesis of inflammatory disorders remain obscure. In this study, we examined the roles of IL-9 in metabolic reprogramming of human primary keratinocytes (KCs).

View Article and Find Full Text PDF

Antimicrobial Peptides (AMPs) are host defense molecules that initiate microbial death by binding to the membrane. On membrane binding, AMPs undergo changes in conformation and aggregation state to enable killing action. Depending on the AMP and cell membrane characteristics, the nature of binding can be aggregating or non-aggregating, with high/low cooperativity, at single or multiple sites with high/low affinity leading to a unique killing action that needs to be studied individually.

View Article and Find Full Text PDF

Enzymes are essential biological macromolecules, which catalyse chemical reactions and have impacted the human civilization tremendously. The importance of enzymes as biocatalyst was realized more than a century ago by eminent scientists like Kuhne, Buchner, Payen, Sumner, and the last three decades has seen exponential growth in enzyme industry, mainly due to the revolution in tools and techniques in molecular biology, biochemistry and production. This has resulted in high demand of enzymes in various applications like food, agriculture, chemicals, pharmaceuticals, cosmetics, environment and research sector.

View Article and Find Full Text PDF

Background: Production of isoprenoids, a large and diverse class of commercially important chemicals, can be achieved through engineering metabolism in microorganisms. Several attempts have been made to reroute metabolic flux towards isoprenoid pathway in yeast. Most approaches have focused on the core isoprenoid pathway as well as on meeting the increased precursors and cofactor requirements.

View Article and Find Full Text PDF
Article Synopsis
  • A Gene Regulatory Network (GRN) describes how genes interact through their RNA and protein products, influencing the cell's function and expression levels of mRNA and proteins.
  • The study uses a gene expression simulator to analyze GRN in E. coli's central metabolic pathway during anaerobic conditions, specifically focusing on how different transcriptional regulators affect mRNA expression and comparing simulated results with microarray experiment data.
  • Findings reveal a high correlation between predicted expression changes from mutants and experimental data, suggesting that E. coli evolved from lactate secretion to a mixed acid-secreting phenotype, and highlight the importance of mechanistic details in GRN models for data accuracy.
View Article and Find Full Text PDF