Publications by authors named "Sumana Siripattanakul"

The effects of entrapment on nucleic acid content and microbial diversity of mixed cultures in biological municipal wastewater treatment were investigated. Deoxyribonucleic acid content increased 1.6-5.

View Article and Find Full Text PDF

Entrapped bacterial cells are widely used in several biotechnological applications. Cell entrapment procedures are known to affect the viability of bacterial cells. To determine the effect of entrapment procedures on viability of bacterial cells, dissolution of the entrapment matrices using chelating agents or heat is required immediately after the entrapment is completed.

View Article and Find Full Text PDF

A bench-scale sand column experiment was conducted to investigate nitrate removal from synthetic agricultural infiltrate by denitrifying bacterial cells entrapped in calcium alginate compared to free cells. The effects of methanol as a carbon source and cell loading were examined. Low (0 to 50%) nitrate removal was observed in both entrapped and free-cell columns without methanol supplement.

View Article and Find Full Text PDF

The increase in mineralization and biodegradability of natural organic matter (NOM) by ozone-vacuum ultraviolet (VUV) in comparison with ozone, VUV, ozone-ultraviolet (UV), and UV were investigated. The effects of operating parameters including pH and ozone dose were evaluated. Results showed that the mineralization rate of dissolved organic carbon (DOC) provided by the processes tested was in the following order: ozone-VUV > VUV > ozone-UV > ozone > UV.

View Article and Find Full Text PDF

A feasibility study of phosphorylated-polyvinyl alcohol immobilized and free mixed bacterial culture bioaugmentation for removing atrazine in agricultural infiltrate was conducted utilizing a sand column setup. The effects of bacterial cell loading and infiltration rate on atrazine degradation were investigated by short-term tests in which the amount of synthetic infiltrate fed through was five times of the void volume (five pore volumes) of the sand column. In addition, the loss of the inoculated atrazine-degrading cultures and the change of bacterial community were determined.

View Article and Find Full Text PDF

Bench-scale sand column breakthrough experiments were conducted to examine atrazine remediation in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, i) tracers, ii) immobilized dead cells, iii) immobilized cells, and iv) free cells, were performed.

View Article and Find Full Text PDF

Bench-scale sand column breakthrough experiments were conducted to examine atrazine removal in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, (i) tracers, (ii) immobilized dead cells, (iii) immobilized cells, and (iv) free cells, were performed.

View Article and Find Full Text PDF