Li-ion batteries based on high specific capacity LixSiO-Graphite anodes and LiNiCo MnAlO (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C-Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO.
View Article and Find Full Text PDFRedox flow batteries (RFBs) employing nonaqueous electrolytes could potentially operate at much higher cell voltages, and therefore afford higher energy and power densities, than RFBs employing aqueous electrolytes. The development of such high-voltage nonaqueous RFBs requires anolytes that are electrochemically stable, especially in the presence of traces of oxygen and/or moisture. The inherent atmospheric reactivity of anolytes mandates judicious molecular design with high electron affinity and electrochemical stability.
View Article and Find Full Text PDF