Publications by authors named "Suman Pahal"

Biologics targeting matrix-degrading proteases, cartilage repair, and inflammation are emerging as promising approaches for osteoarthritis (OA) treatment. Recent research highlights biologic-human placental tissue (HPT) as a potential OA therapy due to its biocompatibility, abundant protein biofactors, and ability to reduce cartilage degradation by suppressing protease expression. Microneedles (MNs) are receiving growing attention for enhancing transdermal delivery of biologics as an alternative to conventional subcutaneous injections.

View Article and Find Full Text PDF

Background: Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity.

Objective: Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea.

View Article and Find Full Text PDF

Arthritis is an inflammatory disorder that leads to degeneration and swelling in the joints thereby severely affecting mobility. Till date, a complete cure for this disorder remains elusive. Administration of disease modifying anti-rheumatic drugs has not proved effective owing to poor retention of drugs at the site of inflammation in the joints.

View Article and Find Full Text PDF

Hollow microneedle arrays (HMNs) are an excellent choice for managing chronic diseases requiring the administration of multiple drug doses over a prolonged duration. However, HMNs have gained partial success due to limitations in their manufacturing capabilities, and cumbersome processes. In the present study, polymeric HMNs were fabricated using a novel single-step drop-casting process without needing cleanroom facilities, and sophisticated instrumentation.

View Article and Find Full Text PDF

Layer-by-layer (LbL) self-assembled polyelectrolyte multilayer (PEM) films are a simple yet elegant bottom-up technology to create films at the nano-microscale. This low-cost technology has been widely used as a universal functionalization technique on a broad spectrum of substrates. Biomolecules under investigation can be incubated onto films based on complementary charge interactions between the films and biomolecules.

View Article and Find Full Text PDF

Transdermal and intradermal drug delivery utilizing microneedles is an emerging front in painless therapeutics. Drug delivery using hollow microneedles is the most preferred method for delivering generic transdermal drugs in the clinical setup. The needle tip must be extremely short as the drug is administered to sub-millimeter depths.

View Article and Find Full Text PDF

Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release.

View Article and Find Full Text PDF

Chitosan derived from chitin is one of the most abundant naturally occurring biocompatible polymers obtained from fungi and arthropods. In this work, we report the enhancement in the bactericidal efficacy of CHI in the presence of a sharp nanotopography. High-aspect ratio nanostructured surface (NSS) was fabricated using a single-step deep reactive ion etching technique (DRIE).

View Article and Find Full Text PDF

The synergistic relationship between structure and the bulk properties of polyelectrolyte multilayer (PEM) films has generated tremendous interest in their application for loading and release of bioactive species. Layer-by-layer assembly is the simplest, cost effective process for fabrication of such PEMs films, leading to one of the most widely accepted platforms for incorporating biological molecules with nanometre precision. The bulk reservoir properties of PEM films render them a potential candidate for applications such as biosensing, drug delivery and tissue engineering.

View Article and Find Full Text PDF

The measurement of molecular transport within polymer films yields information about the internal structural organization of the films and is useful in applications such as the design of polymeric capsules for drug delivery. Layer-by-layer assembly of polyelectrolyte multilayer films has been widely used in such applications where the multilayer structure often exhibits anisotropic transport resulting in different diffusivities in the lateral (parallel to the film) and transverse (normal to the film) directions. Although lateral transport can be probed using techniques such as fluorescence recovery after photobleaching (FRAP), it cannot be applied to probing transverse diffusivity in polymer films smaller than the diffraction limit of light.

View Article and Find Full Text PDF

An electrochromic zwitterionic viologen, N,N'-bis(3-sulfonatopropyl)-4-4'-bipyridinium, has been used for the first time for doping poly (3,4-ethylenedioxythiopene) (PEDOT) films during electropolymerization. Slow and fast diffusional rates for the monomer at deposition potentials of +1.2 and +1.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Suman Pahal"

  • - Suman Pahal's recent research primarily focuses on innovative drug delivery systems, particularly utilizing microneedle technology to enhance therapeutic efficacy in various medical applications, including arthritis treatment and wound healing.
  • - Pahal has also delved into understanding the molecular mechanisms behind drought tolerance in pigeon pea through comparative transcriptome analysis, aiming to provide insights for improving agricultural resilience under changing climate conditions.
  • - Additionally, his work on polyelectrolyte multilayer films highlights their potential in biosensing and drug delivery applications, showcasing advancements in their fabrication and characterization for enhancing material performance in biomedical fields.