In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain.
View Article and Find Full Text PDFActively treadmilling FtsZ acts as the pivotal scaffold for bacterial cell divisome components providing them with a circumferential ride along the site of future division. FtsZ from slow growing Helicobacter pylori (HpFtsZ), a class I carcinogen which thrives abundantly in the acidic environment is poorly understood. We studied HpFtsZ as a function of pH, cations and time and compared it with well-studied E.
View Article and Find Full Text PDFMultiple rounds of DNA replication take place in various stages of the life cycle in the human malaria parasite Plasmodium falciparum. Previous bioinformatics analysis has shown the presence of putative Autonomously Replicating Sequence (ARS) like sequences in the Plasmodium genome. However, the actual sites and frequency of replication origins in the P.
View Article and Find Full Text PDFChromatin modification through histone acetylation/deacetylation is important for the regulation of transcription as well as DNA replication in eukaryotes. PfGCN5 and PfMYST are two well-studied histone acetyltransferases in Plasmodium. PfMYST containing the MYST domain, zinc finger domain, and the chromodomain primarily acetylates histone 4.
View Article and Find Full Text PDFThe glycolytic enzyme phosphoglycerate mutase (PGM) is of utmost importance for overall cellular metabolism and has emerged as a novel therapeutic target in cancer cells. This enzyme is also conserved in the rapidly proliferating malarial parasite Plasmodium falciparum, which have a similar metabolic framework as cancer cells and rely on glycolysis as the sole energy-yielding process during intraerythrocytic development. There is no redundancy among the annotated PGM enzymes in Plasmodium, and PfPGM1 is absolutely required for the parasite survival as evidenced by conditional knockdown in our study.
View Article and Find Full Text PDFDNA gyrase is an ATP dependent Type IIA topoisomerase that is unique to prokaryotes. Interestingly DNA gyrase has also been found in the apicoplasts of apicomplexan parasites like Plasmodium falciparum (Pf) the causative agent of Malaria. Gyrase B (GyrB), a subunit of gyrase A B complex has an N-terminal domain (GyrBN) which is endowed with ATPase activity.
View Article and Find Full Text PDFHelicobacter pylori, a type 1 carcinogen, accounts for numerous gastric cancer-related deaths worldwide. Repurposing existing drugs or developing new ones for a combinatorial approach against increasing antimicrobial resistance is the need of the hour. This study highlights the efficacy of acriflavine hydrochloride (ACF-HCl) in inhibiting the growth of H.
View Article and Find Full Text PDFArtemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively.
View Article and Find Full Text PDFAntimalarial drug resistance is a serious obstacle in the persistent quest to eradicate malaria. There is a need for potent chemical agents that are able to act on drug-resistant populations at reasonable concentrations without any related toxicity to the host. By rational drug design, we envisaged to address this issue by generating a novel hybrid drug possessing two pharmacophores that can act on two unique and independent targets within the cell.
View Article and Find Full Text PDFThe pathogenesis of human malarial parasite is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite.
View Article and Find Full Text PDFHelicase loaders are required for the loading of helicases at the vicinity of replication origins. In Helicobacter pylori, Hp0897 has been shown to be a potential helicase loader for replicative helicase (HpDnaB) although it does not show any sequence homology with conventional DnaC like helicase loader proteins. Therefore, it is important to investigate the in vivo role of Hp0897 and structure-function analysis with respect to domain mapping of Hp0897 and HpDnaB.
View Article and Find Full Text PDFProliferative cell nuclear antigen (PCNA) is the processivity factor for various DNA polymerases and it functions in response to DNA damage in eukaryotic system. Plasmodium falciparum contains two PCNAs, while PCNA1 has been attributed to DNA replication, the role of PCNA2 has been assigned to DNA damage response in erythrocytic developmental stages. Although a recent transposon mediated knockout strategy qualified pcna2 as a nonessential gene in Plasmodium berghei, a conventional homologous recombination-based knockout strategy has not been employed for this gene yet.
View Article and Find Full Text PDFIn erythrocytes, actively multiplying Plasmodium falciparum parasites exhibit a unique signature of virulence associated histone modifications, thereby epigenetically regulating the expression of the majority of genes. Histone acetylation is one such modification, effectuated and maintained by the dynamic interplay of two functionally antagonist enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Their inhibition leads to hypo/hyperacetylation and is known to be deleterious for P.
View Article and Find Full Text PDFProliferating Cell Nuclear Antigen (PCNA) undergoes several post-translational modifications including phosphorylation leading to its regulation in mammalian and yeast systems. Plasmodium falciparum possesses two PCNAs (PCNA1 & PCNA2) with an edge of PfPCNA1 over PfPCNA2 for DNA replication. Recent phospho-proteome data report phosphorylation of S191 residue without its functional implication.
View Article and Find Full Text PDFDNA replication and cell division are two fundamental processes in the life cycle of a cell. The majority of prokaryotic cells undergo division by means of binary fission in coordination with replication of the genome. Both processes, but especially their coordination, are poorly understood in Helicobacter pylori.
View Article and Find Full Text PDFMalaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported.
View Article and Find Full Text PDFThe characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. () have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to , in the present study, we have tested β-clamp inhibitor molecules against β-clamp.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
Nucleosome assembly in P. falciparum could be the key process in maintaining its genomic integrity as DNA replicates more than once per cell cycle during several stages of its life cycle. Here, we report the functional characterization of P.
View Article and Find Full Text PDFThe β-clamp is the processivity-promoting factor for most of the enzymes in prokaryotic DNA replication; hence, it is a crucial drug target. In the present study, we investigated the β-clamp from Helicobacter pylori, aiming to seek potential drug molecules against this gastric-cancer-causing bacterium. An in silico screening of Food and Drug Administration (FDA) approved drugs against the H.
View Article and Find Full Text PDFDuring active proliferation phase of intra-erythrocytic cycle, the genome of P. falciparum is regulated epigenetically and evolutionary conserved parasite-specific histone proteins are extensively acetylated. The reversible process of lysine acetylation, causing transcriptional activation and its deacetylation, causing transcriptional repression is regulated by balanced activities of HATs and HDACs.
View Article and Find Full Text PDFDNA replication is a fundamental process in genome maintenance, and initiates from several genomic sites (origins) in eukaryotes. In Saccharomyces cerevisiae, conserved sequences known as autonomously replicating sequences (ARSs) provide a landing pad for the origin recognition complex (ORC), leading to replication initiation. Although origins from higher eukaryotes share some common sequence features, the definitive genomic organization of these sites remains elusive.
View Article and Find Full Text PDFA novel class of bifunctional molecules was synthesized integrating acridine (Ac) and redox-active naphthalenediimide (NDI) scaffolds directly and through a flexible linker (en). We evaluated in vitro antiplasmodial activity, physicochemical properties, and a possible mode of action. Theoretical studies suggested electronic segmentation between the electron-rich Ac and electron-deficient NDI scaffolds.
View Article and Find Full Text PDFCell division in bacteria is initiated by FtsZ, which forms a Z ring at the middle of the cell, between the nucleoids. The Z ring is stabilized by Z ring-associated proteins (Zaps), which crosslink the FtsZ filaments and provide strength. The deletion of Zaps leads to the elongation phenotype with an abnormal Z ring.
View Article and Find Full Text PDFDNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site.
View Article and Find Full Text PDFRegulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans.
View Article and Find Full Text PDF