Biochim Biophys Acta Biomembr
April 2017
Sphingolipids are essential components of eukaryotic cell membranes and are known to modulate a variety of cellular functions. It is becoming increasingly clear that membrane lipids play a crucial role in modulating the function of integral membrane proteins such as G protein-coupled receptors (GPCRs). In this work, we utilized LY-B cells, that are sphingolipid-auxotrophic mutants defective in sphingolipid biosynthesis, to monitor the role of cellular sphingolipids in the function of an important neurotransmitter receptor, the serotonin receptor.
View Article and Find Full Text PDFThe role of membrane cholesterol as a crucial regulator in the structure and function of membrane proteins and receptors is well documented. However, there is a lack of consensus on the mechanism for such regulation. We have previously shown that the function of an important neuronal receptor, the serotonin1A receptor, is modulated by cholesterol in hippocampal membranes.
View Article and Find Full Text PDFDipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, an essential lipid in higher eukaryotic membranes, has previously been shown to increase membrane dipole potential. In this work, we explored the effect of stereoisomers of cholesterol, ent-cholesterol and epi-cholesterol, on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS.
View Article and Find Full Text PDF