Publications by authors named "Sumalekshmy S"

Article Synopsis
  • Push-pull fluorophores with donor-π-acceptor structures are useful for two-photon microscopy, enhancing brightness through charge-delocalization in excited states.
  • The study focused on the fluorescent probe chromis-1, revealing that its pH-dependent emission is influenced by intramolecular proton transfer rather than direct deprotonation of water.
  • A modification of the pyridine nitrogen's position in the fluorophore significantly reduced its excited-state basicity, emphasizing the need for careful design in fluorescent probes to limit pH-induced variations in response.
View Article and Find Full Text PDF

The commercial value of cashew nut shell liquid (CNSL) has become a cornerstone of the agrowaste industry. It is the by-product of the cashew industry and has an 1/8 inch thickness of soft honeycomb structure. CNSL contains phenolic lipids with aliphatic chains such as anacardic acid, cardanol, cardol and methyl cardol, and their derivatives.

View Article and Find Full Text PDF

Despite the significant advantages of two-photon excitation microscopy (TPEM) over traditional confocal fluorescence microscopy in live-cell imaging applications, including reduced phototoxicity and photobleaching, increased depth penetration, and minimized autofluorescence, only a few metal ion-selective fluorescent probes have been designed and optimized specifically for this technique. Building upon a donor-acceptor fluorophore architecture, we developed a membrane-permeant, Zn(II)-selective fluorescent probe, chromis-1, that exhibits a balanced two-photon cross section between its free and Zn(II)-bound form and responds with a large spectral shift suitable for emission-ratiometric imaging. With a K of 1.

View Article and Find Full Text PDF

Ternary complex formation with solvent molecules and other adventitious ligands may compromise the performance of metal-ion-selective fluorescent probes. As Ca(II) can accommodate more than 6 donors in the first coordination sphere, commonly used crown ether ligands are prone to ternary complex formation with this cation. The steric strain imposed by auxiliary ligands, however, may result in an ensemble of rapidly equilibrating coordination species with varying degrees of interaction between the cation and the specific donor atoms mediating the fluorescence response, thus diminishing the change in fluorescence properties upon Ca(II) binding.

View Article and Find Full Text PDF

Metal ion-responsive fluorescent probes are powerful tools for visualizing labile metal ion pools in live cells. To take full advantage of the benefits offered by two-photon excitation microscopy, including increased depth penetration, reduced phototoxicity, and intrinsic 3D capabilities, the photophysical properties of the probes must be optimized for nonlinear excitation. This review summarizes the challenges associated with the design of two-photon excitable fluorescent probes and labels and offers an overview on recent efforts in developing selective and sensitive reagents for the detection of metal ions in biological systems.

View Article and Find Full Text PDF

A series of water-soluble 2-(2'-arylsulfonamidophenyl)benzimidazole derivatives containing electron-donating and accepting groups attached to various positions of the fluorophore pi-system has been synthesized and characterized in aqueous solution at 0.1 M ionic strength. The measured pK(a)'s for deprotonation of the sulfonamide group of monosubstituted derivatives range between 6.

View Article and Find Full Text PDF

Vacuum-ultraviolet (VUV) irradiation (lambda(exc): 172 +/- 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g.

View Article and Find Full Text PDF

Two novel donor-acceptor-substituted vinyltetrahydropyrene derivatives, 2-N,N-dimethylamino-7-(1-carbethoxyvinyl)-4,5,9,10-tetrahydropyrene, , and 2-N,N-dimethylamino-7-(1,1-dicyanovinyl)-4,5,9,10-tetrahydropyrene, , were synthesized and their photophysical properties investigated in solvents of different polarities. Our studies revealed the existence of intramolecular charge transfer excited states in these molecules. For both compounds the fluorescence maxima exhibited solvent polarity-dependent red shifts.

View Article and Find Full Text PDF