Publications by authors named "Sumalee Tungpradabkul"

Melioidosis, a human infectious disease with a high mortality rate in many tropical countries, is caused by the pathogen Burkholderia pseudomallei (B. pseudomallei). The function of the B.

View Article and Find Full Text PDF

β-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in β-thalassemia/Hb E patients.

View Article and Find Full Text PDF

A serious human infectious disease called Melioidosis is a result of Burkholderia pseudomallei infection. Treatment for infected individuals is difficult due to a wide range of ineffective antibiotics including a high level of antibiotic tolerance which has been known to be caused by biofilm production. However, biofilm forming processes of this bacterium are not well documented despite multiple-methodologies being applied.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a Gram negative bacterium and the causative agent of melioidosis. Nonetheless, how virulence factors and pathogenic mechanisms are regulated have been elusive. In this study, we determined a role of polyphosphate kinase 1 (Ppk1) in regulation of quorum sensing (QS) and the sigma factor RpoS, and identified genes co-regulated by Ppk1, QS and RpoS.

View Article and Find Full Text PDF

Background: is an intracellular bacteria causing Melioidosis, the disease widely disseminates in Southeast Asia and Northern Australia. has ability to invade various types of host cell and to interfere with host defense mechanisms, such as nitric oxide (NO). Due to the cross-talk among alternative killing mechanisms in host immune response against invading microbes, autophagy is the molecular mechanism belonging to intracellular elimination of eukaryotic cells that has been widely discussed.

View Article and Find Full Text PDF

Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis. The complete genome sequences of this pathogen have been revealed, which explain some pathogenic mechanisms. In various hostile conditions, for example, during nitrogen and amino acid starvation, bacteria can utilize alternative sigma factors such as RpoS and RpoN to modulate genes expression for their adaptation and survival.

View Article and Find Full Text PDF

Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research.

View Article and Find Full Text PDF

Burkholderia pseudomallei, a pathogenic gram-negative bacterium, causes the severe human disease melioidosis. This organism can survive in eukaryotic host cells by escaping reactive oxygen species via the regulation of stress responsive sigma factors, including RpoS. In B.

View Article and Find Full Text PDF

Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity.

View Article and Find Full Text PDF

Background: Dengue is the world's most common mosquito-borne viral disease. Poor proofreading by RNA polymerase during its replication results in the accumulation of mutations in its genome. This leads to a diversity of genotypes in the viral population termed quasispecies.

View Article and Find Full Text PDF

AGC2, a member of the mitochondrial carrier protein family, is as an aspartate-glutamate carrier and is important for urea synthesis and the maintenance of the malate-aspartate shuttle. Mutations in SLC25A13, the gene encoding AGC2, result in two age dependent disorders: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and type II citrullinemia (CTLN2). The clinical features of CTLN2 are very similar to those of other urea cycle disorders making a clear diagnosis difficult.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of a fatal disease, melioidosis. However, the mechanisms of pathogenesis and genes involved in its virulence are not understood. In the current study, whether stationary phase and stress response sigma factor RpoS and BpsI-mediated quorum sensing (QS) system co-regulate its target genes was investigated.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the etiologic agent of melioidosis. Using 2DE and MALDI-TOF MS, we report here a proteome reference map constructed from early stationary phase, a bacterial adaptation process. We identified 282 protein spots representing 220 ORFs; many of them have been implicated in bacterial pathogenesis.

View Article and Find Full Text PDF

Background: Hemoglobin E/β-thalassemia is particularly common in Southeast Asia and has variable symptoms ranging from mild to severe anemia. Previous investigations demonstrated the remarkable symptoms of β-thalassemia in terms of the acceleration of apoptotic cell death. Ineffective erythropoiesis has been studied in human hematopoietic stem cells, however the distinct apoptotic mechanism was unclear.

View Article and Find Full Text PDF

Burkholderia pseudomallei, the causative agent of the potentially fatal tropical disease melioidosis, is known to be highly resistant to oxidative stress although the mechanism of this resistance remains to be fully elucidated. Previous studies have shown that an OxyR is involved in the regulation of oxidative stress via the katG and dpsA genes encoding KatG and DpsA and that the alternative sigma factor, RpoS, plays a critical role in resistance to oxidative stress by regulating katG and katE genes. Here it is shown that RpoS is essential for expression of the oxidative stress regulator OxyR, since a mutant strain lacking RpoS failed to induce oxyR expression both during normal growth and under conditions of oxidative stress.

View Article and Find Full Text PDF

Burkholderia pseudomallei, a motile and rod Gram-negative bacterium, is the causative agent of melioidosis. The bacterium is an intracellular pathogen and that motility is generally crucial for their survival in a natural environment and for systemic infection inside a host. We report here a role of B.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei, a gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear.

View Article and Find Full Text PDF

RpoS subunit of RNA polymerase is a bacterial alternative sigma factor and major regulator important for response to a variety of stress conditions. However, RpoS-dependent genes in Burkholderia pseudomallei remained undefined. We identified the RpoS regulon of B.

View Article and Find Full Text PDF

Burkholderia pseudomallei is an agent of melioidosis and is closely related to avirulent B. thailandensis. Burkholderia thailandensis has a 15-bp deletion within the variable region of the flagellin gene fliC compared with B.

View Article and Find Full Text PDF

The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax.

View Article and Find Full Text PDF

Immunity induced by Plasmodium vivax infections leads to memory T-cell recruitment and activation during subsequent infections. Here, we investigated the role of regulatory T cells (Treg) in coordination with the host immune response during P. vivax infection.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting B. pseudomallei from oxidative stress mediated, for example, by organic hydroperoxides.

View Article and Find Full Text PDF