J Phys Condens Matter
May 2023
Investigations of single and bilayers of bismuth are one of the most thrusting areas of research in contemporary condensed matter physics and material sciences. This is because such ultrathin layers of bismuth host interesting exotic electronic properties, which are important from both fundamental science and future application perspectives. In the past, many inorganic processes for the synthesis of single and bi-layers of bismuth were reported using physical and chemical vapor deposition techniques.
View Article and Find Full Text PDFPhys Rev Lett
September 2014
Angular resolved photoemission spectroscopy in combination with ab initio calculations show that trace amounts of carbon doping of the Bi_{2}Se_{3} surface allows the controlled shift of the Dirac point within the bulk band gap. In contrast to expectation, no Rashba-split two-dimensional electron gas states appear. This unique electronic modification is related to surface structural modification characterized by an expansion of the top Se-Bi spacing of ≈11% as evidenced by surface x-ray diffraction.
View Article and Find Full Text PDFIn this work nanoclusters formed in a Pt/Ni/C multi-trilayer by the ion-irradiated method of synthesis are characterized. In particular, an attempt to understand the role of interfaces in the synthesis is made. With this objective, ion-irradiation-induced structural changes in a Pt/Ni/C multi-trilayer using X-ray absorption spectroscopy (at the Ni K-edge) in conjunction with the X-ray standing-wave technique are investigated.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2007
Microstructural characterization of a synthetic periodic and graded Pt/Ni/C multilayer system by X-ray reflectivity and ion scattering techniques is presented. The experimental reflectivity data are fitted with a theoretical multi-trilayer model with graded periodicity which increases from substrate to film surface along the surface normal direction. The increase in periodicity is found to be due to a linear increase in C-layer thickness from the bottom to the top, with a change of slope nearly at the middle of the multilayer stack.
View Article and Find Full Text PDF