Publications by authors named "Sumaira Ashraf"

This study investigates the interconnectedness of the Islamic stock market, Bullion, and Bitcoin as diversifiers for portfolios, exploring their role as hedges and safe havens. The analysis covers the period from January 2015 to December 2022, with a particular focus on the influence of the COVID-19 pandemic and the Russia-Ukraine War on the MSCI World Islamic Index, bullions (Gold, Silver, Platinum, Nickel, Palladium, and Aluminium), and Bitcoin, employing a time-varying parameter vector autoregression (TVP-VAR) model. During crisis periods, our findings reveal that the transmission and reception of shocks among these assets varied, with a heightened level of co-movement observed during the pandemic and war periods.

View Article and Find Full Text PDF

Magnetorheological (MR) materials are classified as smart materials that can alter their rheological features once exposed to peripheral magnetic fields. MR materials have been a standard and one of the primary smart materials for the last few decades due to their outstanding vibration control performance in adaptive sandwich structures and systems. This paper reviews the vibration suppression investigations of flexible constructions using MR elastomers (MREs).

View Article and Find Full Text PDF

There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques.

View Article and Find Full Text PDF

Nanoparticle contrast agents are useful tools to label stem cells and monitor the bio-distribution of labeled cells in pre-clinical models of disease. In this context, understanding the fate of the particles after injection of labelled cells is important for their eventual clinical use as well as for the interpretation of imaging results. We examined how the formulation of superparamagnetic iron oxide nanoparticles (SPIONs) impacts the labelling efficiency, magnetic characteristics and fate of the particles by comparing individual SPIONs with polyelectrolyte multilayer capsules containing SPIONs.

View Article and Find Full Text PDF

The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials.

View Article and Find Full Text PDF

We have studied the effect of the zwitterionic surface coating of quantum dots (QDs) on their interaction with a serum supplemented cell medium and their internalization by human cervical carcinoma (HeLa) cells. Zwitterionic QDs showed negligible adsorption of human serum albumin (HSA) selected as a model serum protein, in contrast to similar but negatively charged QDs. The incorporation of zwitterionic QDs by HeLa cells was found to be lower than for negatively charged QDs and for positively charged QDs, for which the uptake yield was largest.

View Article and Find Full Text PDF

Engineering the physical properties of particles, especially their size, is an important parameter in the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the use of a charged species and/or solvent with high dielectric constant can influence the size and distribution of particles, with the charged species having a greater effect on the size of the particles and the solvent a greater effect on the distribution of the particles.

View Article and Find Full Text PDF

The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment.

View Article and Find Full Text PDF

Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA.

View Article and Find Full Text PDF

What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure.

View Article and Find Full Text PDF

In this review, an overview of the current state-of-the-art of gold-based nanomaterials (Au NPs) in medical applications is given. The unique properties of Au NPs, such as their tunable size, shape, and surface characteristics, optical properties, biocompatibility, low cytotoxicity, high stability, and multifunctionality potential, among others, make them highly attractive in many aspects of medicine. First, the preparation methods for various Au NPs including functionalization strategies for selective targeting are summarized.

View Article and Find Full Text PDF

Aim: We report here, a case series of patients with acute kidney injury (AKI) after ingestion of paraphenylene diamine (PPD) a derivative of analine. It is used as a colouring agent to dye hair, fur and plastic and in photographic films.

Methods: Subjects for the study reported here comprised a cohort of 100 patients coming to this institution with AKI following PPD poisoning.

View Article and Find Full Text PDF

Colloidal particles with fluorescence read-out are commonly used as sensors for the quantitative determination of ions. Calcium, for example, is a biologically highly relevant ion in signaling, and thus knowledge of its spatio-temporal distribution inside cells would offer important experimental data. However, the use of particle-based intracellular sensors for ion detection is not straightforward.

View Article and Find Full Text PDF

Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species.

View Article and Find Full Text PDF

Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats.

View Article and Find Full Text PDF

Casein, a milk protein, is used to produce biotolerable and highly stable silver nanoparticles with a fair control over their size without using any additional reducing agent. These silver nanoparticles undergo reversible agglomeration to form protein-silver nanoparticle composite agglomerates as pH approaches to the isoelectric point of casein protein (pI=4.6).

View Article and Find Full Text PDF

Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli.

View Article and Find Full Text PDF

The concept of a long-term sensor for ion changes in the lysosome is presented. The sensor is made by layer-by-layer assembly of oppositely charged polyelectrolytes around ion-sensitive fluorophores, in this case for protons. The sensor is spontaneously incorporated by cells and resides over days in the lysosome.

View Article and Find Full Text PDF