Publications by authors named "Sultana Nahar"

Narrowband Internet of Things (NB-IoT) is a promising technology for healthcare applications since it reduces the latency necessary in acquiring healthcare data from patients, as well as handling remote patients. Due to the interference, limited bandwidth, and heterogeneity of generated data packets, developing a data transmission framework that offers differentiated Quality of Services (QoS) to the critical and non-critical data packets is challenging. The existing literature studies suffer from insufficient access scheduling considering heterogeneous data packets and relationship among them in healthcare applications.

View Article and Find Full Text PDF

Context: Infection caused by extended-spectrum beta-lactamases (ESBL) producing organism is a major problem regarding antibiotic resistance.

Aims: The aim of this study was to find out the antibiogram of ESBL producing organisms isolated from various samples.

Settings And Design: This cross-sectional study was carried out in the Department of Microbiology of a Tertiary Care Hospital, Dhaka, Bangladesh from January to June 2014.

View Article and Find Full Text PDF

With the advent of monochromatic and quasi-monochromatic x-ray sources, we explore their potential with computational and experimental studies on propagation through a combination of low and high-Z (atomic number) media for applications to imaging and detection. The multi-purpose code GEANT4 and a new code PHOTX are employed in numerical simulations, and a variety of x-ray sources are considered: conventional broadband devices with well-known spectra, quasi-monochromatic laser driven sources, and monochromatic synchrotron x-rays. Phantom samples consisting of layers of low-Z and high-Z material are utilized, with atomic-molecular species ranging from HO to gold.

View Article and Find Full Text PDF

Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R-matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe^{16+}), with a wave function expansion of 99 Fe xviii (Fe^{17+}) LS core states from n≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z-pinch fusion device at solar interior conditions.

View Article and Find Full Text PDF

The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt.

View Article and Find Full Text PDF

110 disabled and 110 normal healthy children with the age range from 3 to 14 were examined in this cross sectional study. The average number of decayed tooth found 5.6 in deciduous and 6.

View Article and Find Full Text PDF

In our novel technique of tumor vessels treatment, High Z (HZ) contrast atoms are injected into the blood vessel and the tumor region is irradiated with "narrowband" fluorescence photon (FP) beam tuned to the "resonance energies". Theoretically, this technique guarantees a dose 10(2) - 10(3) higher than that achieved in conventional radiation therapy (RT). Meanwhile, this high dose is confined to a region of tens of micrometers.

View Article and Find Full Text PDF

It is shown that X-ray absorption can be considerably enhanced at resonant energies corresponding to K-shell excitation into higher shells with electron vacancies following Auger emissions in high-Z elements and compounds employed in biomedical applications. We calculate Auger resonant probabilities and cross sections to obtain total mass attenuation coefficients with resonant cross sections and detailed resonance structures corresponding to Kalpha, Kbeta, Kgamma, Kdelta, and Keta complexes lying between 6.4-7.

View Article and Find Full Text PDF

We present numerical simulations of X-ray emission and absorption in a biological environment for which we have modified the general-purpose computer code Geant4. The underlying mechanism rests on the use of heavy nanoparticles delivered to specific sites, such as cancerous tumors, and treated with monoenergetic X-rays at resonant atomic and molecular transitions. X-ray irradiation of high-Z atoms results in Auger decays of photon emission and electron ejections creating multiple electron vacancies.

View Article and Find Full Text PDF