Publications by authors named "Sullivan Renouard"

Amendments are good tools for immobilizing metal(loid) and improving phytoremediation success. However, the amendment effect is variable and depends on multiple parameters, including amendment type and ageing. Such an ageing effect is rarely studied.

View Article and Find Full Text PDF

The green synthesis of nanoparticles has emerged as a simple, safe, sustainable, reliable and eco-friendly protocol. Among different types of NPs, green-synthesized zinc oxide NPs (ZnONPs) show various promising biological uses due to their interesting magnetic, electrical, optical and chemical characteristics. Keeping in view the dependence of the therapeutic efficacy of NPs on their physico-chemical characteristics, the green synthesis of ZnONPs using leaf extract under UV-A and UV-C light was carried out in this study.

View Article and Find Full Text PDF

A nano-revolution based on the green synthesis of nanomaterials could affect all areas of human life, and nanotechnology represents a propitious platform for various biomedical applications. During the synthesis of nanoparticles, various factors can control their physiognomies and clinical activities. Light is one of the major physical factors that can play an important role in tuning/refining the properties of nanoparticles.

View Article and Find Full Text PDF

"Bau Luang" or Gaertn. is an aquatic medicinal herb that has been used as a component of traditional medicines, medicinal products, and herbal tea for good health, particularly in Asia. The stamen of is an important part of this medicinal plant that is used in the form of dried and/or powdered stamens for herbal tea as well as the main ingredient of some traditional remedies.

View Article and Find Full Text PDF

The involvement of a WRKY transcription factor in the regulation of lignan biosynthesis in flax using a hairy root system is described. Secoisolariciresinol is the main flax lignan synthesized by action of LuPLR1 (pinoresinol-lariciresinol reductase 1). LuPLR1 gene promoter deletion experiments have revealed a promoter region containing W boxes potentially responsible for the response to Fusarium oxysporum.

View Article and Find Full Text PDF

The LuPLR1 gene encodes a pinoresinol lariciresinol reductase responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive lignan, highly accumulated in the seedcoat of flax (Linum usitatissimum L.). Abscisic acid (ABA) plays a key role in the regulation of LuPLR1 gene expression and lignan accumulation in both seeds and cell suspensions, which require two cis-acting elements (ABRE and MYB2) for this regulation.

View Article and Find Full Text PDF

This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols.

View Article and Find Full Text PDF

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids).

View Article and Find Full Text PDF

Biochar, produced by the pyrolysis of biomass under low oxygen conditions, has gathered attention in the last few years due to its capability to reduce metal(loid)s bioavailability and mobility in soils, as well as its beneficial effects on soil fertility. Indeed, biochar amendment to polluted soil induced usually an increase of pH, water holding capacity, and nutrient contents, associated with a decrease of metal(loid)s concentrations in soil pore water, through sorption. However, biochar has been shown efficient in sorbing cation pollutants, like Pb, but present a low sorption capacity towards anions like As.

View Article and Find Full Text PDF

Little is known about biogenically synthesized Zinc oxide nanoparticles (ZnONPs) from . Synthesis of metal oxide NPs from essential oil producing medicinal plants results in less harmful side effects to the human population as compared to chemically synthesized NPs. In this article, we report biogenic synthesis of ZnONPs from derived plantlets and thidiazuron (TDZ) induced callus culture of .

View Article and Find Full Text PDF

hairy root lines were established from hypocotyl pieces using strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines.

View Article and Find Full Text PDF

This study provides new insights into the biosynthesis regulation and in planta function of the lignan yatein in flax leaves. Pinoresinol-lariciresinol reductases (PLR) catalyze the conversion of pinoresinol into secoisolariciresinol (SECO) in lignan biosynthesis. Several lignans are accumulated in high concentrations, such as SECO accumulated as secoisolariciresinol diglucoside (SDG) in seeds and yatein in aerial parts, in the flax plant (Linum usitatissimum L.

View Article and Find Full Text PDF

The concentration of secoisolariciresinol diglucoside (SDG) found in flaxseed ( L.) is higher than that found in any other plant. It exists in flaxseed coats as an SDG-3-hydroxy-3-methylglutaric acid oligomer complex.

View Article and Find Full Text PDF

Podophyllotoxin, a lignan still extracted from the rhizomes of (Berberidaceae), is the starting molecule for the semisynthesis of widely used anticancer drugs such as etoposide. However, this source is threatened by the over-collection of . Plants belonging to the Linaceae and Cupressaceae families could be attractive alternative sources with species that contain the lignan podophyllotoxin or its precursors and derivatives.

View Article and Find Full Text PDF

Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated.

View Article and Find Full Text PDF

Due to their pronounced cytotoxic activity, a number of aryltetralin lignans (ATLs), such as podophyllotoxin (PTOX), are used as antitumor compounds. The production of such molecules from entire plants or plant cell-tissue-organ cultures is thus of interest to the pharmaceutical industry. Hairy root cultures constitute a good tool not only for phytochemical production but also for investigating plant secondary metabolism.

View Article and Find Full Text PDF

RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat.

View Article and Find Full Text PDF

Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid.

View Article and Find Full Text PDF

A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature.

View Article and Find Full Text PDF

Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development.

View Article and Find Full Text PDF

Introduction: In the plant kingdom, flaxseed (Linum usitatissimum L.) is the richest source of secoisolariciresinol diglucoside (SDG), which is of great interest because of its potential health benefits for human beings. The information about the kinetics of SDG formation during flaxseed development is rare and incomplete.

View Article and Find Full Text PDF

Background: While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals.

View Article and Find Full Text PDF

Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response.

View Article and Find Full Text PDF