Publications by authors named "Suli Cheng"

In recent years, there have been growing concerns about the environment and its effect on human health. In this paper, we measure human health by mortality. Firstly, we use the method of deviation decomposition to investigate the different changes of mortality in eastern, central and western regions of China.

View Article and Find Full Text PDF

The rapid development of social economy not only increases people's living pressure but also reduces people's health. Looking for a healthy development prediction model has become a domestic concern. Based on the analysis of the influencing factors of health development, this paper looks for a model to predict the development of public health, so as to improve the accuracy of health development prediction.

View Article and Find Full Text PDF

Rationale: The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR mice.

Objective: To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR mice (PTH1R-VKO) and Cre-negative controls.

Methods And Results: Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout.

View Article and Find Full Text PDF

Background & Objective: NSCs therapy is considered one of the most potential methods for spinal cord injury (SCI).

Methods: We build the SCI model rats to investigate the therapeutic effect of fire needle acupuncture in improving the locomotor function of SCI rats and its possible mechanism. BBB scale was used for the motor ability of rats.

View Article and Find Full Text PDF

In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells ( NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation.

View Article and Find Full Text PDF

Rationale: Wnt signaling regulates key aspects of diabetic vascular disease.

Objective: We generated SM22-Cre;LRP6(fl/fl);LDLR(-/-) mice to determine contributions of Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6) in the vascular smooth muscle lineage of male low-density lipoprotein receptor-null mice, a background susceptible to diet (high-fat diet)-induced diabetic arteriosclerosis.

Methods And Results: As compared with LRP6(fl/fl);LDLR(-/-) controls, SM22-Cre;LRP6(fl/fl);LDLR(-/-) (LRP6-VKO) siblings exhibited increased aortic calcification on high-fat diet without changes in fasting glucose, lipids, or body composition.

View Article and Find Full Text PDF

When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells.

View Article and Find Full Text PDF

Objective: Endothelial cells (ECs) can undergo an endothelial-mesenchymal transition with tissue fibrosis. Wnt- and Msx2-regulated signals participate in arteriosclerotic fibrosis and calcification. We studied the impact of Wnt7, Msx2, and Dkk1, a Wnt7 antagonist, on endothelial-mesenchymal transition in primary aortic ECs.

View Article and Find Full Text PDF

In LDLR(-/-) mice fed high-fat diabetogenic diets, osteogenic gene-regulatory programs are ectopically activated in vascular myofibroblasts and smooth muscle cells that promote arteriosclerotic calcium deposition. Msx2-Wnt signaling pathways previously identified as important for craniofacial skeletal development are induced in the vasculature by TNF, a prototypic cytokine mediator of the low-grade systemic inflammation of diabesity. To better understand this biology, we studied TNF actions on Msx2 in aortic myofibroblasts.

View Article and Find Full Text PDF

Rationale: Vascular fibrosis and calcification contribute to diabetic arteriosclerosis, impairing Windkessel physiology necessary for distal tissue perfusion. Wnt family members, upregulated in arteries by the low-grade inflammation of "diabesity," stimulate type I collagen expression and osteogenic mineralization of mesenchymal progenitors via beta-catenin. Conversely, parathyroid hormone (PTH) inhibits aortic calcification in low-density lipoprotein receptor (LDLR)-deficient mice fed high fat diabetogenic diets (HFD).

View Article and Find Full Text PDF

Msx2 is a homeodomain transcription factor first identified in craniofacial bone and human femoral osteoblasts. We hypothesized that Msx2 might activate skeletal Wnt signaling. Therefore, we analyzed the effects of CMV-Msx2 transgene (Msx2Tg) expression on skeletal physiology and composition.

View Article and Find Full Text PDF

Studies of fracture repair have revealed that paracrine endothelial-mesenchymal interactions direct bone formation that restores osseous integrity. Angiogenic growth factors and specific members of the bone morphogenetic protein (BMP) family mediate these interactions. Recently, these same signals have been shown to be critical in the vascular pathobiology of hypertension, diabetes, and atherosclerosis.

View Article and Find Full Text PDF

Objective: Aortic calcification is prevalent in type II diabetes (T2DM), enhancing morbidity and tracking metabolic syndrome parameters. Ldlr(-/-) mice fed high-fat "Westernized" diets (HFD) accumulate aortic calcium primarily in the tunica media, mediated via osteogenic morphogens and transcriptional programs that induce aortic alkaline phosphatase (ALP). Because elevated TNF-alpha is characteristic of obesity with T2DM, we examined contributions of this inflammatory cytokine.

View Article and Find Full Text PDF

To establish a new amino acid structure descriptor that can be applied to polypeptide quantitative structure activity relationship (QSAR) studies, a new descriptor, SVRDF, was derived from a principal components analysis of a matrix of 150 radial distribution function index of amino acids. The scale was then applied in three panels of peptide QSAR that were molded by partial least squares regression. The obtained models with the correlation coefficients (R2(cum)), cross-validation correlation coefficients (Q2(cum)) were 0.

View Article and Find Full Text PDF

Unlabelled: Ovariectomy-induced bone loss is accentuated in mice with germline Cdh2 haploinsufficiency, the result of a decreased osteoblastogenesis in the face of normal osteoclast number. Reduced N-cadherin abundance in these mice decreases cell-cell adhesion and alters signaling pathways important for osteoblast commitment and differentiation, thus providing in vivo evidence that N-cadherin-mediated cell-cell interactions are involved in homeostatic responses to increased bone remodeling.

Introduction: We have shown that targeted expression of a dominant negative truncated form of N-cadherin (Cdh2) delays acquisition of peak bone mass in mice and retards osteoblast differentiation.

View Article and Find Full Text PDF

Vascular calcification increasingly afflicts our aging and dysmetabolic population, predisposing patients to cardiovascular mortality and lower extremity amputation. Active osteogenic processes are evident in most histoanatomic variants, including elaboration of BMP2-Msx2 signals required for craniofacial bone formation. We developed an animal model of diet-induced diabetes, dyslipidemia, and vascular calcification.

View Article and Find Full Text PDF

Unlabelled: FHL2, a molecule that interacts with many integrins and transcription factors, was found to play an important role in osteoblast differentiation. Overexpression of FHL2 increases the accumulation of osteoblast differentiation markers and matrix mineralization, whereas FHL2 deficiency results in inhibition of osteoblast differentiation and decreased bone formation.

Introduction: Integrin-matrix interaction plays a critical role in osteoblast function.

View Article and Find Full Text PDF

Unlabelled: We studied the effects of dominant negative N-cadherin (NCadDeltaC) expression in ST2 cells on their ability to support osteoclastogenesis. Expression of NCadDeltaC in ST2 cells did not decrease cell-to-cell adhesion but significantly reduced osteoclast formation when co-cultured with BMMs. NCadDeltaC inhibited beta-catenin/TCF signaling, resulting in decreased RANKL expression, which could contribute to the reduced osteoclast formation.

View Article and Find Full Text PDF

In diabetic LDLR-/- mice, an ectopic BMP2-Msx2 gene regulatory program is upregulated in association with vascular calcification. We verified the procalcific actions of aortic Msx2 expression in vivo. CMV-Msx2 transgenic (CMV-Msx2Tg(+)) mice expressed 3-fold higher levels of aortic Msx2 than nontransgenic littermates.

View Article and Find Full Text PDF

Unlabelled: Both integrins and BMP-2 exert similar effects on osteoblasts. We examined the relationship between the alphav-containing integrins (alphavbeta) and BMP-2 in osteoblast function. BMP-2 stimulates alphavbeta expression.

View Article and Find Full Text PDF

Mutations of critical components of the Wnt pathway profoundly affect skeletal development and maintenance, probably via modulation of beta-catenin signaling. We tested the hypothesis that beta-catenin is involved in mesenchymal lineage allocation to osteogenic cells using a beta-catenin mutant with constitutive transcriptional activity (DeltaN151). Although this stable beta-catenin had no effects by itself on osteogenic differentiation of multipotent embryonic cell lines, it synergized with bone morphogenetic protein-2 (BMP-2) resulting in dramatic stimulation of alkaline phosphatase activity, osteocalcin gene expression, and matrix mineralization.

View Article and Find Full Text PDF

We studied the function of osteoblast cadherins in vivo by transgenic expression of a truncated N-cadherin with dominant-negative action, driven by an osteoblast-specific promoter (OG2-NcadDeltaC). During the first 3 months of life, bone mineral density was reduced, whereas percent body fat was increased in transgenic animals compared with wild-type littermates, with associated decreased bone formation rate and osteoblast number, but normal osteoclast number. Osteoblast differentiation was delayed in calvaria cells isolated from transgenic mice.

View Article and Find Full Text PDF

Msx2 promotes osteogenic lineage allocation from mesenchymal progenitors but inhibits terminal differentiation demarcated by osteocalcin (OC) gene expression. Msx2 inhibits OC expression by targeting the fibroblast growth factor responsive element (OCFRE), a 42-bp DNA domain in the OC gene bound by the Msx2 interacting nuclear target protein (MINT) and Runx2/Cbfa1. To better understand Msx2 regulation of the OCFRE, we have studied functional interactions between MINT and Runx2, a master regulator of osteoblast differentiation.

View Article and Find Full Text PDF